[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Probability of getting a lucky short-exposure image through turbulence

Not Accessible

Your library or personal account may give you access

Abstract

In short-exposure imaging through turbulence, there is some probability that the image will be nearly diffraction limited because the instantaneous wave-front distortion over the aperture was negligible. A number of years ago in a rather brief paper, Hufnagel (1966) argued heuristically that the probability of getting a good image would decrease exponentially with aperture area. This paper undertakes a rigorous quantitative analysis of the probability. We find that the probability of obtaining a good short-exposure image is Prob ≈ 5.6 exp[−0.1557 (D/r0)2] (for D/r0 ≥ 3.5), where D is the aperture diameter and r0 is the coherence length of the distorted wave front, as defined by Fried (1967). A good image is taken to be one for which the squared wave-front distortion over the aperture is 1 rad2 or less. The analysis is based on the decomposition of the distorted wave front over the aperture, in an orthonormal series with randomly independent coefficients. The orthonormal functions used are the eigenfunctions of a Karhunen-Loève integral equation. The integral equation is solved using a separation of variables into radial and azimuthal dependence. The azimuthal dependence was solved analytically and the radial, numerically. The first 569 radial eigenfunctions and eigenvalues were obtained. The probability of obtaining a good short-exposure image corresponds to a hyperspace integral in which the spatial dimensions are the independent random coefficients in the orthonormal series expansion. It is equal to the probability that a randomly chosen point in the hyperspace will lie within a hypersphere of unit radius, the points in the hyperspace being randomly chosen in accordance with the product of independent Gaussian probability distribution—one distribution for each dimension. The variance of these distrbutions is directly proportional to the eigenvalues of the Karhunen-Loève equation. This hyperspace integral (involving up to several hundred dimensions) has been evaluated using Monte Carlo techniques.

© 1978 Optical Society of America

Full Article  |  PDF Article
More Like This
Measurement of the probability of getting a lucky short-exposure image through turbulence

D. Bensimon, A. Englander, R. Karoubi, and M. Weiss
J. Opt. Soc. Am. 71(9) 1138-1139 (1981)

Modal compensation of atmospheric turbulence phase distortion*

J. Y. Wang and J. K. Markey
J. Opt. Soc. Am. 68(1) 78-87 (1978)

Anisoplanatic imaging through turbulent media: image recovery by local information fusion from a set of short-exposure images

Mikhail A. Vorontsov and Gary W. Carhart
J. Opt. Soc. Am. A 18(6) 1312-1324 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (56)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel