[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Development of Clotrimazole Multiple W/O/W Emulsions as Vehicles for Drug Delivery: Effects of Additives on Emulsion Stability

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

Multiple emulsions have attracted considerable attention in recent years for application as potential delivery systems for different drugs. The aim of the present work is to design a new formulation containing clotrimazole (CLT) loaded into multiple emulsions by two-step emulsification method for transdermal delivery. Different ingredients and quantities like primary and secondary co-emulsifiers and the nature of oily phase were assayed in order to optimize the best system for good. Resulting formulations were characterized in terms of droplet size, conductivity, pH, entrapment efficiency, rheological behavior, and stability under various storage conditions for 180 days. pH values of multiple emulsions containing CLT ranged from 7.04 ± 0.03 to 6.23 ± 0.04. Droplet size increased when increasing concentration of sorbitan stearate. The addition of polysorbate 80 resulted in significant decrease of oil droplet size comparing with those prepared without this. CLT entrapment efficiency ranged between 85.64% and 97.47%. All formulations exhibited non-Newtonian pseudoplastic flow with some apparent thixotropic behavior. Cross and Herschel-Bulkley equations were the models that best fitted experimental data. In general, the addition of 1% polysorbate 80 resulted in a decrease of viscosity values. No signals of optical instability were observed, and physicochemical properties remained almost constant when samples were stored at room temperature after 180 days. On the contrary, samples stored at 40°C exhibited pronounced increase in conductivity values 24 h after elaboration and some of them were unstable after 180 days of storage. JMLP01 was proposed as an innovative and stable system to incorporate CLT as active pharmaceutical ingredient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Henry KW, Nickels JT, Edlind TD. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother. 2000;44:2693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Benzaquen LR, Brugnara C, Byers HR, Gatton-Celli S, Halperin JA. Clotrimazole inhibits cell proliferation in vitro and in vivo. Nat Med. 1995;1(6):534–40.

    Article  CAS  PubMed  Google Scholar 

  3. Brugnara C, Gee B, Armsby CC, Kurth S, Sakamoto M, Rifai N, et al. Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. J Clin Invest. 1996;97(5):1227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ning M, Guo Y, Pan H, Chen X, Gu Z. Preparation, in vitro and in vivo evaluation of liposomal/niosomal gel delivery systems for clotrimazole. Drug Dev Ind Pharm. 2005;31(4-5):375–83.

    Article  CAS  PubMed  Google Scholar 

  5. Isaev NK, Stelmashook EV, Dirnagl U, Andreeva NA, Manuhova L, Vorobjev VS, et al. Neuroprotective effects of the antifungal drug clotrimazole. Neuroscience. 2002;113(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  6. Gemma S, Campiani G, Butini S, Kukreja G, Coccone SS, Joshi BP, et al. Clotrimazole scaffold as an innovative pharmacophore towards potent antimalarial agents: design, synthesis, and biological and structure-activity relationship studies. J Med Chem. 2008;51(5):1278–94.

    Article  CAS  PubMed  Google Scholar 

  7. Pedersen M, Bjerregaar S, Jacobse J, Sørensen AM. A genuine clotrimazole (-cyclodextrin inclusion complex-isolation, antimycotic activity, toxicity and an unusual dissolution rate. Int J Pharm. 1998;176:121–31.

    Article  CAS  Google Scholar 

  8. Prabagar B, Yoo BK, Woo JS, Kim JA, Rhee JD, Piao MG, et al. Enhanced bioavailability of poorly water-soluble clotrimazole by inclusion with beta-cyclodextrin. Arch Pharm Res. 2007;30:249–54.

    Article  CAS  PubMed  Google Scholar 

  9. Yong CS, Li DX, Prabagar B, Park BC, Yi SJ, Yoo BK, et al. The effect of cyclodextrin complexation on the bioavailability and hepatotoxicity of clotrimazole. Pharmazie. 2007;62:756–9.

    CAS  PubMed  Google Scholar 

  10. Tonglairoum P, Ngawhirunpat T, Rojanarata T, Kaomongkolgit R, Opanasopit P. Fabrication of a novel scaffold of clotrimazole-microemulsion-containing nanofibers using an electrospinning process for oral candidiasis applications. Colloids Surf B: Biointerfaces. 2015;126:18–25.

    Article  CAS  PubMed  Google Scholar 

  11. Gignone A, Manna L, Ronchetti S, Banchero M, Onida B. Incorporation of clotrimazole in ordered mesoporous silica by supercritical CO2. Micropor Mesopor Mat. 2014;200:291–96.

    Article  CAS  Google Scholar 

  12. Souto EB, Müller RH. Rheological and in vitro release behaviour of clotrimazole-containing aqueous SLN dispersions and commercial creams. Pharmazie. 2007;62:505–9.

    CAS  PubMed  Google Scholar 

  13. Ravani L, Esposito E, Bories C, Lievin-Le Moal V, Loiseau PM, Djabourov M, et al. Clotrimazole-loaded nanostructured lipid carrier hydrogels: thermal analysis and in vitro studies Int. J Pharm. 2013;454:695–702.

    CAS  Google Scholar 

  14. Ning M, Gu Z, Pan H, Yu H, Xiao K. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antifungal drug clotrimazole. Indian J Exp Biol. 2005;43:150–7.

    CAS  PubMed  Google Scholar 

  15. Pavelic Z, Skalko-Basnet N, Jalsenjak I. Characterization and in vitro evaluation of bioadhesive liposome gels for local therapy of vaginitis. Int J Pharm. 2005;301:140–8.

    Article  CAS  PubMed  Google Scholar 

  16. Shahin M, Hady SA, Hammad M, Mortada N. Novel jojoba oil-based emulsion gel formulations for clotrimazole delivery. AAPS PharmSciTech. 2011;12(1):239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santos SS, Lorenzoni A, Pegoraro NS, Denardi LB, Alves SH, Schaffazick SR, et al. Formulation and in vitro evaluation of coconut oil-core cationic nanocapsules intended for vaginal delivery of clotrimazole. Colloids Surf B: Biointerfaces. 2014;116:270–6.

    Article  CAS  PubMed  Google Scholar 

  18. Tonglairoum P, Ngawhirunpat T, Rojanarata T, Panomsuk S, Kaomongkolgit R, Opanasopit P. Fabrication of mucoadhesive chitosan coated polyvinylpyrrolidone/cyclodextrin/clotrimazole sandwich patches for oral candidiasis. Carbohydr Polym. 2015;132:173–9.

    Article  CAS  PubMed  Google Scholar 

  19. Schmidts T, Dobler D, Schlupp P, Nissing C, Garn H, Runkel F. Development of multiple W/O/W emulsions as dermal carrier system for oligonucleotides: effect of additives on emulsion stability. Int J Pharm. 2010;398(1-2):107–13.

    Article  CAS  PubMed  Google Scholar 

  20. Silva A, Grossiord JL, Puiseux F, Seiller M. Insulin in W/O/W multiple emulsions: preparation, characterization and determination of stability towards proteases in vitro. J Microencap. 1997;14(3):311–9.

    Article  Google Scholar 

  21. Villar AM, Naveros BC, Campmany AC, Trenchs MA, Rocabert CB, Bellowa LH. Design and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for enhanced dissolution of gemfibrozil. Int J Pharm. 2012;431(1-2):161–75.

    Article  CAS  PubMed  Google Scholar 

  22. Celia C, Trapasso E, Cosco D, Paolino D, Fresta M. Turbiscan® Lab Expert analysis of the stability of ethosomes and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids Surf B: Biointerfaces. 2009;72:155–60.

    Article  CAS  PubMed  Google Scholar 

  23. Florence AT, Whitehill D. Formulation and stability of multiple emulsions. Int J Pharm. 1982;11:277–308.

    Article  CAS  Google Scholar 

  24. Jiang J, Mei Z, Xu J, Sun D. Effect of inorganic electrolytes on the formation and the stability of water-in-oil (W/O) emulsions. Colloids Surf A. 2013;429:82–90.

    Article  CAS  Google Scholar 

  25. Muschiolik G. Multiple emulsions for food use. Curr Opin Colloid Interface Sci. 2007;12:213–20.

    Article  CAS  Google Scholar 

  26. Olivieri L, Seiller M, Bromberg L, Besnard M, Duong TN, Grossiord JL. Optimization of a thermally reversible W/O/W multiple emulsion for shear-induced drug release. J Control Release. 2003;88(3):401–12.

    Article  CAS  PubMed  Google Scholar 

  27. Tedajo GM, Seiller M, Prognon P, Grossiord JL. pH compartmented w/o/w multiple emulsion: a diffusion study. J Control Release. 2001;75(1-2):45–53.

    Article  CAS  PubMed  Google Scholar 

  28. Tang SY, Manickam S, Billa N. Impact of osmotic pressure and gelling in the generation of highly stable single core water-in-oil-in-water (W/O/W) nano multiple emulsions of aspirin assisted by two-stage ultrasonic cavitational emulsification. Colloids Surf B: Biointerfaces. 2013;102:653–8.

    Article  CAS  PubMed  Google Scholar 

  29. Geiger S, Tokgoz S, Fructus A, Jager-Lezer N, Seiller M, Lacombe C, et al. Kinetics of swelling-breakdown of a w/o/w multiple emulsion: possible mechanisms for the lipophilic surfactant effect. J Control Release. 1998;52(1-2):99–107.

    Article  CAS  PubMed  Google Scholar 

  30. Souto EB, Wissing SA, Barbosa CM, Müller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278:71–7.

    Article  CAS  PubMed  Google Scholar 

  31. Pal R. Rheology of simple and multiple emulsions. Curr Opin Colloid Interface Sci. 2011;16:41–60.

    Article  CAS  Google Scholar 

  32. Krishnaiah YS, Xu X, Rahman Z, Yang Y, Katragadda U, Lionberger R, et al. Development of performance matrix for generic product equivalence of acyclovir topical creams. Int J Pharm. 2014;475(1-2):110–22.

    Article  CAS  PubMed  Google Scholar 

  33. Kawashima Y, Hino T, Takeuchi H, Niwa T, Horibe K. Rheological study of w/o/w emulsions by a cone-and-plate viscometer: negative thixotropy and shear-induced phase inversion. Int J Pharm. 1991;72(1):65–77.

    Article  CAS  Google Scholar 

  34. Silva AC, Amaral MH, González-Mira E, Santos D, Ferreira D. Solid lipid nanoparticles (SLN)-based hydrogels as potential carriers for oral transmucosal delivery of risperidone: preparation and characterization studies. Colloids Surf B: Biointerfaces. 2012;93:241–8.

    Article  CAS  PubMed  Google Scholar 

  35. El-Hadidy GN, Ibrahim HK, Mohamed MI, El-Milligi MF. Microemulsions as vehicles for topical administration of voriconazole: formulation and in vitro evaluation. Drug Dev Ind Pharm. 2012;38(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  36. Schramm G. A practical approach to rheology and rheometry. 2nd ed. Germany: Gebrueder Haake; 1994.

  37. Korhonen M, Lehtonen J, Hellen L, Hirvonene J, Yliruusi J. Rheological properties of three component creams containing sorbitan monoesters as surfactants. Int J Pharm. 2002;247(1-2):103–14.

    Article  CAS  PubMed  Google Scholar 

  38. Wen L, Papadopoulos KD. Osmotic pressure on water transport in w1/o/w2 emulsions. J Coll Interface Sci. 2001;235:398–404.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Evonik and Gattefossé for their generous gifts of excipients and formulation advices. In memoriam Prof. Coloma Barbé.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Clares.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1

(PDF 55 kb)

ESM 2

(PDF 130 kb)

ESM 3

(PDF 708 kb)

ESM 4

(PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suñer, J., Calpena, A.C., Clares, B. et al. Development of Clotrimazole Multiple W/O/W Emulsions as Vehicles for Drug Delivery: Effects of Additives on Emulsion Stability. AAPS PharmSciTech 18, 539–550 (2017). https://doi.org/10.1208/s12249-016-0529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0529-8

KEY WORDS

Navigation