[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Development of Novel Chitosan Microcapsules for Pulmonary Delivery of Dapsone: Characterization, Aerosol Performance, and In Vivo Toxicity Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

Pneumocystis carinii pneumonia (PCP) is a major opportunistic infection that affects patients with human immunodeficiency virus. Although orally administered dapsone leads to high hepatic metabolism, decreasing the therapeutic index and causing severe side effects, this drug is an effective alternative for the treatment of PCP. In this context, microencapsulation for pulmonary administration can offer an alternative to increase the bioavailability of dapsone, reducing its adverse effects. The aim of this work was to develop novel dapsone-loaded chitosan microcapsules intended for deep-lung aerosolized drug delivery. The geometric particle size (D 4,3) was approximately 7 μm, the calculated aerodynamic diameter (d aero) was approximately 4.5 μm, and the mass median aerodynamic diameter from an Andersen cascade impactor was 4.7 μm. The in vitro dissolution profile showed an efficient dapsone encapsulation, demonstrating the sustained release of the drug. The in vitro deposition (measured by the Andersen cascade impactor) showed an adequate distribution and a high fine particles fraction (FPF = 50%). Scanning electron microscopy of the pulmonary tissues demonstrated an adequate deposition of these particles in the deepest part of the lung. An in vivo toxicity experiment showed the low toxicity of the drug-loaded microcapsules, indicating a protective effect of the microencapsulation process when the particles are microencapsulated. In conclusion, the pulmonary administration of the novel dapsone-loaded microcapsules could be a promising alternative for PCP treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Gutierrez S, Morilla R, Leon JA, Martin-Garrido I, Rivero L, Friaza V, et al. High prevalence of Pneumocystis jiroveci colonization among young HIV-infected patients. J Adolesc Health. 2011;48(1):103–5.

    Article  PubMed  Google Scholar 

  2. Bennett NJGSAR, Burton F, McLean, J C, Murray C, Schreibman T S, Rigsby M. Pneumocystis (carinii) jiroveci pneumonia. 2010. http://www.patient.co.uk/doctor/pneumocystis-jirovecii-pneumonia

  3. Fishman JA. Treatment of infection due to Pneumocystis carinii. Antimicrob Agents Chemother. 1998;42(6):1309–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Kovacs JA, Gill VJ, Meshnick S, Masur H. New insights into transmission, diagnosis, and drug treatment of Pneumocystis carinii pneumonia. JAMA-J Am Med Assoc [Article]. 2001;286(19):2450–60.

    Article  CAS  Google Scholar 

  5. Ramesh M, Chandrasekar PH. Effective alternates to trimethoprim-sulfamethoxazole as antimicrobial prophylaxis in stem cell recipients: are there any? Pediatr Transplant. 2008;12(8):823–6.

    Article  CAS  PubMed  Google Scholar 

  6. Wolf R, Tuzun B, Tuzun Y. Dapsone: unapproved uses or indications. Clin Dermatol. 2000;18(1):37–53.

    Article  CAS  PubMed  Google Scholar 

  7. Blum RN, Miller LA, Gaggini LC, Cohn DL. Comparative trial of dapsone versus trimethoprim/sulfamethoxazole for primary prophylaxis of Pneumocystis carinii pneumonia. J Acquir Immune Defic Syndr. 1992;5(4):341–7.

    CAS  PubMed  Google Scholar 

  8. Coleman MD. Dapsone-mediated agranulocytosis: risks, possible mechanisms and prevention. Toxicology. 2001;162(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  9. Reddy C, Kannan G, Vasantha J, Kousalya K, Rani N, Thennarasu P, et al. Drug usage evaluation of dapsone. Indian J Pharm Sci. 2009;71(4):456–60.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chougule M, Padhi B, Misra A. Development of spray dried liposomal dry powder inhaler of dapsone. AAPS PharmSciTech. 2008;9(1):47–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ravi Kumar MN. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci. 2000;3(2):234–58.

    CAS  PubMed  Google Scholar 

  12. Jyothi NV, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY. Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul. 2010;27(3):187–97.

    Article  CAS  PubMed  Google Scholar 

  13. Oneda F, Re MI. The effect of formulation variables on the dissolution and physical properties of spray-dried microspheres containing organic salts. Powder Technol. 2003;130(1):377–84.

    Article  CAS  Google Scholar 

  14. El-Gibaly I. Development and in vitro evaluation of novel floating chitosan microcapsules for oral use: comparison with non-floating chitosan microspheres. Int J Pharm. 2002;249(1–2):7–21.

    Article  CAS  PubMed  Google Scholar 

  15. Frijlink HW, De Boer AH. Dry powder inhalers for pulmonary drug delivery. Expert Opin Drug Deliv. 2004;1(1):67–86.

    Article  CAS  PubMed  Google Scholar 

  16. Grenha A, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci. 2005;25(4–5):427–37.

    Article  CAS  PubMed  Google Scholar 

  17. Cruz L, Fattal E, Tasso L, Freitas GC, Carregaro AB, Guterres SS, et al. Formulation and in vivo evaluation of sodium alendronate spray-dried microparticles intended for lung delivery. J Control Release [Article]. 2011;152(3):370–5.

    Article  CAS  Google Scholar 

  18. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19.

    Article  CAS  PubMed  Google Scholar 

  19. D’Addio SM, Chan JG, Kwok PC, Prud’homme RK, Chan HK. Constant size, variable density aerosol particles by ultrasonic spray freeze drying. Int J Pharm. 2012;427(2):185–91.

  20. Zhang X, Ma Y, Zhang L, Zhu J, Jin F. The development of a novel dry powder inhaler. Int J Pharm. 2012;431(1–2):45–52.

    Article  CAS  PubMed  Google Scholar 

  21. de Boer AH, Wissink J, Hagedoorn P, Heskamp I, de Kruijf W, Bunder R, et al. In vitro performance testing of the novel Medspray wet aerosol inhaler based on the principle of Rayleigh break-up. Pharm Res. 2008;25(5):1186–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Xu L, Dong XW, Shen LL, Li FF, Jiang JX, Cao R, et al. Simvastatin delivery via inhalation attenuates airway inflammation in a murine model of asthma. Int Immunopharmacol. 2012;12(4):556–64.

    Article  CAS  PubMed  Google Scholar 

  23. Mukhopadhyay P, Mishra R, Rana D, Kundu PP. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: a review. Prog Polym Sci. 2012;37(11):1457–75.

    Article  CAS  Google Scholar 

  24. Zhang J, Zhu X, Jin Y, Shan W, Huang Y. Mechanism study of cellular uptake and tight junction opening mediated by goblet cell-specific trimethyl chitosan nanoparticles. Mol Pharm. 2014;11(5):1520–32.

    Article  CAS  PubMed  Google Scholar 

  25. Price N, Newman B. Demonstration of the principles of enzyme-catalysed reactions using alkaline phosphatase. Biochem Mol Biol Educ. 2000;28(4):207–2010.

    CAS  Google Scholar 

  26. Vargas M, Albors A, Chiralt A, González-Martínez C. Characterization of chitosan–oleic acid composite films. Food Hydrocolloids. 2009;23(2):536–47.

    Article  CAS  Google Scholar 

  27. Wang H-C, John W. Particle density correction for the aerodynamic particle sizer. Aerosol Sci Technol. 1987;6(2):191–8.

    Article  CAS  Google Scholar 

  28. Washington C. Drug release from microdisperse systems: a critical review. Int J Pharm. 1990;58(1):1–12.

    Article  CAS  Google Scholar 

  29. Babson A, Philips GE. A rapid colorimetric assay for serum lactic dehydrogenase. Clin Chemica Acta. 1965;12:265–75.

    Google Scholar 

  30. Hussain A, Majumder QH, Ahsan F. Inhaled insulin is better absorbed when administered as a dry powder compared to solution in the presence or absence of alkylglycosides. Pharm Res. 2006;23(1):138–47.

    Article  CAS  PubMed  Google Scholar 

  31. Layne E. Total protein-modified according to Layne, E., spectropho-tometric and turbidimetric methods for measuring proteins. II. Protein estimation with the Folin-Ciocalteu reagent. Methods Enzimol. 1957;3:447–54.

    Article  Google Scholar 

  32. Learoyd TP, Burrows JL, French E, Seville PC. Sustained delivery by leucine-modified chitosan spray-dried respirable powders. Int J Pharm. 2009;372(1–2):97–104.

    Article  CAS  PubMed  Google Scholar 

  33. Okamoto H, Shiraki K, Yasuda R, Danjo K, Watanabe Y. Chitosan-interferon-beta gene complex powder for inhalation treatment of lung metastasis in mice. J Control Release. 2011;150(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  34. Vehring R, Foss WR, Lechuga-Ballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38(7):728–46.

    Article  CAS  Google Scholar 

  35. Pilcer G, Wauthoz N, Amighi K. Lactose characteristics and the generation of the aerosol. Adv Drug Deliv Rev. 2012;64(3):233–56.

    Article  CAS  PubMed  Google Scholar 

  36. Li FQ, Yan C, Bi J, Lv WL, Ji RR, Chen X, et al. A novel spray-dried nanoparticles-in-microparticles system for formulating scopolamine hydrobromide into orally disintegrating tablets. Int J Nanomedicine. 2011;6:897–904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Alhalaweh A, Andersson S, Velaga SP. Preparation of zolmitriptan-chitosan microparticles by spray drying for nasal delivery. Eur J Pharm Sci. 2009;38(3):206–14.

    Article  CAS  PubMed  Google Scholar 

  38. Aquino RP, Prota L, Auriemma G, Santoro A, Mencherini T, Colombo G, et al. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells. Int J Pharm. 2012;426(1–2):100–7.

    Article  CAS  PubMed  Google Scholar 

  39. Wu P-C, Huang Y-B, Chang J-S, Tsai M-J, Tsai Y-H. Design and evaluation of sustained release microspheres of potassium chloride prepared by Eudragit®. Eur J Pharm Sci. 2003;19(2–3):115–22.

    Article  CAS  PubMed  Google Scholar 

  40. Henderson RF. Use of bronchoalveolar lavage to detect respiratory tract toxicity of inhaled material. Exp Toxicol Pathol. 2005;57 Suppl 1:155–9.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank CAPES, Rede Nanotecnologia Farmacêutica CAPES, CNPq/Brasilia/Brazil, INCT-IF CNPq/MCT, Pronem and Pronex FAPERGS-CNPq, and FAPERGS.

Conflict of Interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvia Stanisçuaski Guterres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, M., Jornada, D.S., Pohlmann, A.R. et al. Development of Novel Chitosan Microcapsules for Pulmonary Delivery of Dapsone: Characterization, Aerosol Performance, and In Vivo Toxicity Evaluation. AAPS PharmSciTech 16, 1033–1040 (2015). https://doi.org/10.1208/s12249-015-0283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-015-0283-3

KEY WORDS