[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Additive Manufacturing with 3D Printing: Progress from Bench to Bedside

  • Review Article
  • Theme: Precision Medicine: Implications for the Pharmaceutical Sciences
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) printing was discovered in the 1980s, and many industries have embraced it, but the pharmaceutical industry is slow or reluctant to adopt it. Spiritam® is the first and only 3D-printed drug product approved by FDA in 2015. Since then, the FDA has not approved any 3D-printed drug product due to technical and regulatory issues. The 3D printing process cannot compete with well-established and understood conventional processes for making solid dosage forms. However, pharmaceutical companies can utilize it where mass production is not required; rather, consistency, precision, and accuracy in quality are paramount. There are many 3D printing technologies available, and not all of them are amenable to pharmaceutical manufacturing. Each 3D technology has certain prerequisites in terms of material that it can handle. Some of the pertinent technical and regulatory issues are as follows: Current Good Manufacturing Practice, in-process tests and process control, and cleaning validation. Other promising area of 3D printing use is printing medications for patients with special needs in a hospital and/or pharmacy setting with minimum regulatory oversight. This technology provides a novel opportunity for in-hospital compounding of necessary medicines to support patient-specific medications. However, aspects of the manufacturing challenges and quality control considerations associated with the varying formulation and processing methods need to be fully understood before 3D printing can emerge as a therapeutic tool. With these points in mind, this review paper focuses on 3D technologies amenable for pharmaceutical manufacturing, excipient requirement, process understanding, and technical and regulatory challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. 3D printing industry. The free beginner’s guide. Access on Oct 27, 2017. https://3dprintingindustry.com/3d-printing-basics-free-beginners-guide#02-history.

  2. Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.

    Article  CAS  PubMed  Google Scholar 

  3. McCue TJ. Wohlers Report: 3D printing industry surpassed $5.1 billion. Forbes. 2016. https://www.forbes.com/sites/tjmccue/2016/04/25/wohlers-report-2016-3d-printer-industry-surpassed-5-1-billion/#3cff22c719a0. April 25, 2016.

  4. As 3-D printing emerges from prototyping to assume a role in mass manufacturing and production, the industry must adapt, PWC 30, 2017. Access on Oct 27, 2017. http://usblogs.pwc.com/emerging-technology/5-ways-3d-printing-revolutionizes-manufacturing/

  5. Hollander J, Natalja G, Harri J, Mohammad K, Ari R, Ermei M, et al. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery. J Pharm Sci. 2016;105:2665–76.

    Article  CAS  PubMed  Google Scholar 

  6. Chung P, Heller JA, Etemadi M, Ottoson PE, Liu JA, Rand L, et al. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding. J Vis Exp. 2014;100:3386–95.

    Google Scholar 

  7. Water JJ, Bohr A, Boetker J, Aho J, Sandler N, Nielsen HM, et al. Three dimensional printing of drug-eluting implants: preparation of an antibacterial polylactide feedstock material. J Pharm Sci. 2015;104:1099–107.

    Article  CAS  PubMed  Google Scholar 

  8. Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1(9):910–7.

    Article  CAS  PubMed  Google Scholar 

  9. Pati F, Shim JH, Lee JS, Cho DW. 3D printing of cell-laden constructs for heterogeneous tissue regeneration. MFGLET. 2013;1(1):49–53.

    CAS  Google Scholar 

  10. Korte C, Quodbach J. Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines. Pharm Dev Technol. 2018;25:1–33.

    Article  CAS  Google Scholar 

  11. Yu DG, Branford-White WC, Yang YC, Zhu LM, Welbeck EW, Yang XL. A novel fast disintegrating tablet fabricated by three-dimensional printing. Drug Dev Ind Pharm. 2009;35(12):1530–6.

    Article  CAS  PubMed  Google Scholar 

  12. Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62.

    Article  CAS  PubMed  Google Scholar 

  13. Brennan Z, FDA to issue more guidance on 3D printing. Regulatory Affairs Professionals Society, Dec 2016. Access on Oct 27, 2017. http://www.raps.org/Regulatory-Focus/News/2016/12/21/26472/FDA-to-Issue-More-Guidance-on-3D-Printing/.

  14. First FDA-approved medicine manufactured using 3D printing technology now available. Aprecia Pharmaceuticals, March 22, 2016. Access on Oct 27, 2017. https://www.aprecia.com/pdf/ApreciaSPRITAMLaunchPressRelease__FINAL.PDF.

  15. Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1–2):376–94.

    Article  PubMed  CAS  Google Scholar 

  16. Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–32.

    Article  CAS  PubMed  Google Scholar 

  17. Ventola CL. Medical applications for 3D printing: current and projected uses. P T. 2014;39:704–11.

    PubMed  PubMed Central  Google Scholar 

  18. ISO/ASTM52900-15. Standard terminology for additive manufacturing—general principles—terminology. West Conshohocken, PA: ASTM International; 2015.

    Google Scholar 

  19. Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, et al. Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci Rep. 2017;7(1):282.

    Article  CAS  Google Scholar 

  20. Lara-Padilla H, Mendoza-Buenrostro C, Cardenas D, Rodriguez-Garcia A, Rodriguez CA. Influence of controlled cooling in bimodal scaffold fabrication using polymers with different melting temperatures. Materials (Basel). 2017;10(6):E640.

    Article  Google Scholar 

  21. Columbus L. The state of 3D printing, 2017. Forbes, Oct 27, 2017. https://www.forbes.com/sites/louiscolumbus/2017/05/23/the-state-of-3d-printing-2017/#1cc435a457eb.

  22. Chua CK, Leong KF, Lim CS. Rapid prototyping-Principles and applications. Edition third, World Scientific. 2003, p. 124.

  23. Long J, Gholizadeh H, Lu J, Bunt C, Seyfoddin A. Application of fused deposition modelling (FDM) method of 3D printing in drug delivery. Curr Pharm Des. 2017;23:433–9.

    CAS  PubMed  Google Scholar 

  24. Singamnenia S, Roychoudhury S, Diegela O, Huanga B. Modeling and evaluation of curved layer fused deposition. J Mat Proc Technol. 2012;212:27–35.

    Article  CAS  Google Scholar 

  25. Jacobs PF. Rapid prototyping and manufacturing: Fundamentals of Stereolithography by Society of Manufacturing Engineers. New York:Mcgraw-Hill;1993.

  26. Pucci JU, Christophe BR, Sisti JA, Connolly Jr ES. Three-dimensional printing: technologies, applications, and limitations in neurosurgery. Biotechnol Adv. 2017;35:521–9.

    Article  PubMed  Google Scholar 

  27. Favero CS, English JD, Cozad BE, Wirthlin JO, Short MM, Kasper FK. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models. Am J Orthod Dentofac Orthop. 2017;152:557–65.

    Article  Google Scholar 

  28. Camardella LT, de Vasconcellos VO, Breuning H. Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases. Am J Orthod Dentofac Orthop. 2017;151:1178–87.

    Article  Google Scholar 

  29. Deckard C. Method and apparatus for producing parts by selective sintering. US Patent 5597589, 1989.

  30. Bai J, Goodridge RD, Yuan S, Zhou K, Chua CK, Wei J. Thermal influence of CNT on the polyamide 12 nanocomposite for selective laser sintering. Molecules. 2015;20:19041–50.

    Article  CAS  PubMed  Google Scholar 

  31. Marro A, Bandukwala T, Mak W. Three-dimensional printing and medical imaging: a review of the methods and applications. Curr Probl Diagn Radiol. 2016;45:2–9.

    Article  PubMed  Google Scholar 

  32. Jakk. What is selective heat sintering (SHS), and how does it work? GoPrint3D April 2016. Access on Oct 27, 2017. https://www.goprint3d.co.uk/blog/selective-heat-sintering-shs-work/.

  33. Binder jetting in 3D printing. Access on Oct 27, 2017. https://www.whiteclouds.com/3dpedia-index/binder-jetting-3d-printing.

  34. Crawford M. 3D-printed drugs: what does the future hold? ASME 2015. Access on Oct 27, 2017. https://www.asme.org/engineering-topics/articles/manufacturing-design/3dprinted-drugs-does-future-hold.

  35. Mancuso E, Alharbi N, Bretcanu OA, Marshall M, Birch MA, McCaskie AW, et al. Three-dimensional printing of porous load-bearing bioceramic scaffolds. Proc Inst Mech Eng H. 2017;231:575–85.

    Article  PubMed  Google Scholar 

  36. Sheydaeian E, Vlasea M, Woo A, Pilliar R, Hu E, Toyserkani E. Effect of glycerol concentrations on the mechanical properties of additive manufactured porous calcium polyphosphate structures for bone substitute applications. J Biomed Mater Res B Appl Biomater. 2017;105:828–35.

    Article  CAS  PubMed  Google Scholar 

  37. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Bio Eng. 2015;9:4.

    Article  CAS  Google Scholar 

  38. FDA inactive ingredient database. Access on Oct 27, 2017. https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm.

  39. FDA data of generally recognized as safe. Access on Oct 27, 2017. https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm. https://www.fda.gov/food/ingredientspackaginglabeling/gras/.

  40. 3D printer filament comparison guide. Accessed on Oct 27, 2017. https://www.matterhackers.com/3d-printer-filament-compare.

  41. Hagan SA, Coombes AGA, Garnett MC, Dunn SE, Davies MC, Illum L, et al. Polylactide-poly(ethylene glycol) copolymers as drug delivery systems. Characterization of water dispersible micelle-forming systems. Langmuir. 1996;12:2153–61.

    Article  CAS  Google Scholar 

  42. Okwuosa TC, Stefaniak D, Arafat B, Isreb A, Wan KW, Alhnan MA. A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res. 2016;33(11):2704–12.

    Article  CAS  PubMed  Google Scholar 

  43. Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–7.

    Article  CAS  PubMed  Google Scholar 

  44. Beck RCR, Chaves PS, Goyanes A, Vukosavljevic B, Buanz A, Windbergs M, et al. 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int J Pharm. 2017;528:268–79.

    Article  CAS  PubMed  Google Scholar 

  45. Sadia M, Sośnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, et al. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm. 2016;513(1–2):659–68.

    Article  CAS  PubMed  Google Scholar 

  46. Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA. Channelled tablets: an innovative approach to accelerating drug release from 3D printed tablets. J Control Release. 2018;269:355–63.

    Article  CAS  PubMed  Google Scholar 

  47. Kim J, McBride S, Tellis B, Alvarez-Urena P, Song Y-H, Dean DD, et al. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication. 2012;4:025003.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang J, Feng X, Patil H, Tiwari RV, Repka MA. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm. 2017;519:186–97.

    Article  CAS  PubMed  Google Scholar 

  49. Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23:1169–85.

    Article  CAS  PubMed  Google Scholar 

  50. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res. 2001;55:203–16.

    Article  CAS  PubMed  Google Scholar 

  51. Guo T, Holzberg TR, Lim CG, Gao F, Gargava A, Trachtenberg JE, et al. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution. Biofabrication. 2017;9(2):024101.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tagami T, Fukushige K, Ogawa E, Hayashi N, Ozeki T. 3D printing factors important for the fabrication of polyvinylalcohol filament-based tablets. Biol Pharm Bull. 2017;40:357–64.

    Article  CAS  PubMed  Google Scholar 

  53. Goyanes A, Buanz AB, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476:88–92.

    Article  CAS  PubMed  Google Scholar 

  54. Melocchi A, Loreti G, Cuto MDD, Maroni A, Gazzaniga A, Zema L. Evaluation of hot-melt extrusion and injection molding for continuous manufacturing of immediate-release tablets. J Pharm Sci. 2015;104:1971–80.

    Article  CAS  PubMed  Google Scholar 

  55. Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509(1–2):255–63.

    Article  CAS  PubMed  Google Scholar 

  56. Okwuosa TC, Pereira BC, Arafat B, Cieszynska M, Isreb A, Alhnan MA. Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy. Pharm Res. 2017;34(2):427–37.

    Article  CAS  PubMed  Google Scholar 

  57. Huang S, O’Donnell KP, Delpon de Vaux SM, O'Brien J, Stutzman J, Williams RO 3rd. Processing thermally labile drugs by hot-melt extrusion: the lesson with gliclazide. Eur J Pharm Biopharm. 2017;119:56–67.

    Article  CAS  PubMed  Google Scholar 

  58. Rahman Z, Siddiqui A, Gupta A, Khan MA. Regulatory considerations in development of amorphous solid dispersions. In: Shah N, Sandhu H, Choi DS, Chokshi H, Malick WA, editors. Amorphous solid dispersions-regulatory considerations in development of amorphous solid dispersions. New York: Springer; 2014. p. 545–63. ISBN: 978-1-4939-1597-2.

    Google Scholar 

  59. Stereolithography (SLA), Formlabs Access on Oct 27, 2017. https://formlabs.com/resources/stereolithography-3d-printing/.

  60. Clark EA, Alexander MR, Irvine DJ, Roberts CJ, Wallace MJ, Sharpe S, et al. 3D printing of tablets using inkjet with UV photoinitiation. Int J Pharm. 2017;529:523–30.

    Article  CAS  PubMed  Google Scholar 

  61. He Y, Tuck CJ, Prina E, Kilsby S, Christie SDR, Edmondson S, et al. A new photocrosslinkable polycaprolactone-based ink for three-dimensional inkjet printing. J Biomed Mater Res B Appl Biomater. 2017;105(6):1645–57.

    Article  CAS  PubMed  Google Scholar 

  62. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503:207–12.

    Article  CAS  PubMed  Google Scholar 

  63. Neiman JA, Raman R, Chan V, Rhoads MG, Raredon MS, Velazquez JJ, et al. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes. Biotechnol Bioeng. 2015;112:777–87.

    Article  CAS  PubMed  Google Scholar 

  64. Kim MS, Son JG, Lee HJ, Hwang H, Choi CH, Kim GH. Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process. Curr Appl Phys. 2014;14:1–7.

    Article  Google Scholar 

  65. Lee D-H, Mai HN, Yang JC, Kwon TY. The effect of 4,4′-bis(N,N-diethylamino) benzophenone on the degree of conversion in liquid photopolymer for dental 3D printing. J Adv Prosthodont. 2015;7:386–91.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Manapat JZ, Mangadlao JD, Tiu BD, Tritchler GC, Advincula RC. High-strength stereolithographic 3D printed nanocomposites: graphene oxide metastability. ACS Appl Mater Interfaces. 2017;22(9):10085–93.

    Article  CAS  Google Scholar 

  67. Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Kadr NA, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater. 2015;16:033502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 2010;6:4495–505.

    Article  CAS  PubMed  Google Scholar 

  69. Lohfeld S, Tyndyk M, Cahill S, Flaherty N, Barron V, McHugh P. A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J Biomed Sci Eng. 2010;3:138–47.

    Article  Google Scholar 

  70. Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, et al. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6:2028–34.

    Article  CAS  PubMed  Google Scholar 

  71. Chua C, Leong K, Tan K, Wiria F, Cheah C. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci Mater Med. 2004;15:1113–21.

    Article  CAS  PubMed  Google Scholar 

  72. Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529:285–93.

    Article  CAS  PubMed  Google Scholar 

  73. Thermoplastics with Polyox™ resins. Access on Oct 23, 2017. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_003a/0901b8038003a657.pdf?filepath=/pdfs/noreg/326-00039.pdf&fromPage=GetDoc.

  74. Rahman Z, Zidan AS, Korang-Yeboah M, Yang Y, Siddiqui A, Shakleya D, et al. Effects of excipients and curing process on the abuse deterrent properties of directly compressed tablets. Int J Pharm. 2017;517:303–11.

    Article  CAS  PubMed  Google Scholar 

  75. Rahman Z, Yang Y, Korang-Yeboah M, Siddiqui A, Xu X, Ashraf M, et al. Assessing impact of formulation and process variables on in-vitro performance of directly compressed abuse deterrent formulations. Int J Pharm. 2016;502:138–50.

    Article  CAS  PubMed  Google Scholar 

  76. Yu DG, Shen XX, Branford-White C, Zhu LM, White K, Yang XL. Novel oral fast-disintegrating drug delivery devices with predefined inner structure fabricated by three-dimensional printing. J Pharm Pharmacol. 2009;61(3):323–9.

    Article  CAS  PubMed  Google Scholar 

  77. Katstra WE, Palazzolo RD, Rowe CW, Giritlioglu B, Teung P, Cima MJ. Oral dosage forms fabricated by three dimensional printing. J Control Release. 2000;66(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  78. Rowe CW, Katstra WE, Palazzolo RD, Giritlioglu B, Teung P, Cima MJ. Multimechanism oral dosage forms fabricated by three dimensional printing. J Control Release. 2000;66(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  79. Rahman Z, Korang-Yeboah M, Siddiqui A, Mohammad A, Khan MA. Understanding effect of formulation and manufacturing variables on the critical quality attributes of warfarin sodium product. Int J Pharm. 2015;495:19–30.

    Article  CAS  PubMed  Google Scholar 

  80. Calvert P. Inkjet printing for materials and devices. Chem Mat. 2001;13:3299–305.

    Article  CAS  Google Scholar 

  81. Wood V, Panzer MJ, Chen J, Bradley MS, Halpert JE, Bawendi MG, et al. Inkjet-printed quantum dot-polymer composites for full-color ac-driven displays. Adv Mater. 2009;21:2151–5.

    Article  CAS  Google Scholar 

  82. Rahmati S, Shirazi F, Baghayeri H. Perusing piezoelectric head performance in a new 3-D printing design. Tsinghua Sci Technol. 2009;14:24–8.

    Article  Google Scholar 

  83. Peters F, Groisman D, Davids R, Hänel T, Dürr H, Klein M. Comparative study of patient individual implants from β-tricalcium phosphate made by different techniques based on CT data. Mater Werkst. 2006;37:457–61.

    Article  CAS  Google Scholar 

  84. Carson JW, Pittenger BH. Bulk properties of powder. In Powder Metal Technologies and applications: Edited by Lee PW, Trudel Y, Iacocca R, German RM, Ferguson BL, Eisen WB, Moyer K, Madan D, Sanderow H. ASM Handbook, Volume 1998;7;1998:287-301

  85. Gold G, Duvall RN, Palermo BT, Slater JG. Powder flow studies III. Factors affecting the flow of lactose granules. J Pharm Sci. 1968;57:667–71.

    Article  CAS  PubMed  Google Scholar 

  86. Lanzetta M, Sachs E. Improved surface finish in 3D printing using bimodal powder distribution. Rapid Prototyp J. 2003;9:157–66.

    Article  Google Scholar 

  87. Derby B. Inkjet printing ceramics: from drops to solid. J Eur Ceram Soc. 2011;31:2543–50.

    Article  CAS  Google Scholar 

  88. Hogekamp S, Pohl M. Methods for characterizing wetting and dispersing of powder. Chem Ing Tech. 2004;76:385–90.

    Article  CAS  Google Scholar 

  89. Pingali K, Mendez R, Lewis D, Michniak-Kohn B, Cuitino A, Muzzio F. Mixing order of glidant and lubricant—influence on powder and tablet properties. Int J Pharm. 2011;409:269–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. J Control Release. 1996;40:77–87.

    Article  CAS  Google Scholar 

  91. Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ, Sohn J, et al. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg. 1998;228:8–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001;7:557–72.

    Article  CAS  PubMed  Google Scholar 

  93. Lam CXF, Mo XM, Teoh SH, Hutmacher DW. Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C. 2002;20:49–56.

    Article  Google Scholar 

  94. Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005;74:782–8.

    Article  PubMed  CAS  Google Scholar 

  95. Rahman Z, Siddiqui A, Khan MA. Assessing the impact of nimodipine devitrification in the ternary cosolvent system through quality by design approach. Int J Pharm. 2013;455:113–23.

    Article  CAS  PubMed  Google Scholar 

  96. Krishnaiah YS, Xu X, Rahman Z, Yang Y, Katragadda U, Lionberger R, et al. Development of performance matrix for generic product equivalence of acyclovir topical creams. Int J Pharm. 2014;475:110–22.

    Article  CAS  PubMed  Google Scholar 

  97. Kolan KC, Leu MC, Hilmas GE, Velez M. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13–93 bioactive glass porous constructs made by selective laser sintering. J Mech Behav Biomed Mater. 2012;13:14–24.

    Article  PubMed  CAS  Google Scholar 

  98. Salmoria GV, Klauss P, Paggi RA, Kanis LA, Lago A. Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polym Test. 2009;28:648–52.

    Article  CAS  Google Scholar 

  99. Feng P, Niu M, Gao C, Peng S, Shuai C. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci Rep. 2014;4:5599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26:4817–27.

    Article  CAS  PubMed  Google Scholar 

  101. Goodridge RD, Tuck CJ, Hague RJM. Laser sintering of polyamides and other polymers. Prog Mater Sci. 2012;57:229–67.

    Article  CAS  Google Scholar 

  102. Amorim FL, Lohrengel A, Neubert V, Higa CF, Czelusniak T. Selective laser sintering of Mo-CuNi composite to be used as EDM electrode. Rapid Prototyping J. 2014;20:59–68.

    Article  Google Scholar 

  103. Savalani MM, Hao L, Dickens PM, Zhang Y, Tanner KE, Harris RA. The effects and interactions of fabrication parameters on the properties of selective laser sintered hydroxyapatite polyamide composite biomaterials. Rapid Prototyp J. 2012;18:16–27.

    Article  Google Scholar 

  104. Sachdeva A, Singh S, Sharma V. Investigating surface roughness of parts produced by SLS process. Int J Adv Manuf Technol. 2013;64:1505–16.

    Article  Google Scholar 

  105. Gu D, Shen Y. Effects of processing parameters on consolidation and microstructure of W–Cu components by DMLS J. Alloys Compd. 2009;473:107–15.

    Article  CAS  Google Scholar 

  106. Wu BM, Cima MJ. Effects of solvent-particle interaction kinetics on microstructure formation during three-dimensional printing. Polymer Eng Sci. 1999;39:249–60.

    Article  CAS  Google Scholar 

  107. Kumar AV, Dutta A, Fay JE. Electrophotographic printing of part and binder powders. Rapid Prototyping J. 2004;10:7–13.

    Article  Google Scholar 

  108. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.

    Article  CAS  PubMed  Google Scholar 

  109. Noguera R, Lejeune M, Chartier T. 3D fine scale ceramic components formed by ink-jet prototyping process. J Eur Ceram Soc. 2005;25:2055–9.

    Article  CAS  Google Scholar 

  110. Rahmati S, Shirazi S, Baghayeri H. Piezo-electric head application in a new 3D printing design. Rapid Prototyping J. 2009;15:187–91.

    Article  Google Scholar 

  111. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93–9.

    Article  PubMed  CAS  Google Scholar 

  112. Kim JD, Choi JS, Kim BS, Choi YC, Cho YW. Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer. 2010;51:2147–54.

    Article  CAS  Google Scholar 

  113. Rahman Z, Siddiqui A, Khan MA. Characterization of a nonribosomal peptide antibiotic solid dispersion formulation by process analytical technologies sensors. J Pharm Sci. 2013;102:4337–46.

    Article  CAS  PubMed  Google Scholar 

  114. Rahman Z, Mohammad A, Siddiqui A, Khan MA. Comparison of univariate and multivariate models of 13C SSNMR and XRPD techniques for quantification of nimodipine polymorphs. AAPS PharmSciTech. 2015;16(6):1368–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rao Pk LJ, Roberson D, Kong Z, Williams C. Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. J Manuf Sci Eng. 2015;137:61007.

    Article  Google Scholar 

  116. Rieder H, Dillhoffer A, Spies M, Bamberg J, Hess T. Online monitoring of additive manufacturing processes using ultrasound. 11th European Conference on Non-Destructive Testing. 2014;6-10.

  117. Kleszczynski S, Jacobsmuhlen JZ, Sehrt JT, Witt G. Error detection in laser beam melting systems by high-resolution imaging. Proceedings of the Twenty Third Annual International Solid Freeform Fabrication Symposium. 2012. Accessed on Oct 27, 2017. http://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-74-Kleszczynski.pdf.

  118. Berumen S, Bechmann F, Lindner S, Kruth JP, Craeghs T. Quality control of laser- and powder bed-based additive manufacturing (AM) technologies. Phys Procedia. 2010;5:617–22.

    Article  Google Scholar 

  119. Wing I, Gorham R, Sniderman B. 3D opportunity for quality assurance and parts qualification. Deloitte Insights Nov 18, 2015. Access on Oct 27, 2017. https://dupress.deloitte.com/dup-us-en/focus/3d-opportunity/3d-printing-quality-assurance-in-manufacturing.html.

  120. Rahman Z, Mohammad A, Akhtar S, Siddiqui A, Korang-Yeboah M, Khan MA. Chemometric model development and comparison of Raman and (13)C solid-state nuclear magnetic resonance-chemometric methods for quantification of crystalline/amorphous warfarin sodium fraction in the formulations. J Pharm Sci. 2015;104(8):2550–8.

    Article  CAS  PubMed  Google Scholar 

  121. Siddiqui A, Rahman Z, Sayeed VA, Khan MA. Chemometric evaluation of near infrared, Fourier transform infrared, and Raman spectroscopic models for the prediction of nimodipine polymorphs. J Pharm Sci. 2013;102:4024–35.

    Article  CAS  PubMed  Google Scholar 

  122. FDA: Q4B evaluation and recommendation of pharmacopeial texts for use in the ICH regions, annex 9(R1) tablet friability general chapter guidance for industry, 2017.

  123. FDA: Q4B evaluation and recommendation of pharmacopeial texts for use in the ICH regions, annex 5(R1) disintegration test general chapter guidance for industry, 2017.

  124. Alafaghani A, Qattawi A, Ablat MA. Design consideration for additive manufacturing: fused deposition modelling. Open J Appl Sci. 2017;7:219–318.

    Google Scholar 

  125. Print troubleshooting pictorial guide. Access on Oct 27, 2017. http://reprap.org/wiki/Print_Troubleshooting_Pictorial_Guide.

  126. 3D printing troubleshooting: 33 common 3D printing problems. Access on Oct 27, 2017. https://all3dp.com/1/common-3d-printing-problems-troubleshooting-3d-printer-issues/.

  127. Print quality troubleshooting guide. Access on Oct 27, 2017. https://www.simplify3d.com/support/print-quality-troubleshooting/.

  128. Hudson B. How to design parts for FDM 3D printing. Access on Oct 27, 2017. https://www.3dhubs.com/knowledge-base/how-design-parts-fdm-3d-printing.

  129. Zhang B, Li Y, Bai Q. Defect formation mechanisms in selective laser melting: a review. Chin J Mech Eng. 2017;30:515–27.

    Article  Google Scholar 

  130. Wang RJ, Wang L, Zhao L, Liu Z. Influence of process parameters on part shrinkage in SLS. Int J Adv Manuf Technol. 2007;33:498–504.

    Article  Google Scholar 

  131. Farzadi A, Solati-Hashjin M, Asadi-Eydivand M, Abu Osman NA. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering. PLoS One. 2014;9:e108252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Code of Federal Regulations Title 21 food and drugs, Chapter I—Food and Drug Administration, Subchapter C Drugs: general, Part 211 current good manufacturing practice for finished pharmaceuticals, 2017.

  133. Siew A. Increasing tablet production with multi-tip tooling. PharmaTech June 2015. Access on Oct 27, 2017. http://www.pharmtech.com/increasing-tablet-production-multi-tip-tooling.

  134. McHugh KJ, Nguyen TD, Linehan AR, Yang D, Behrens AM, Rose S, et al. Fabrication of fillable microparticles and other complex 3D microstructures. Science. 2017;357:2238–1142.

    Article  CAS  Google Scholar 

  135. Stephens B, Azimi P, El Orch Z, Ramos T. Ultrafine particle emissions from desktop 3D printers. Atmos Environ. 2013;79:334–9.

    Article  CAS  Google Scholar 

  136. Yi HG, Choi YJ, Kang KS, Hong JM, Pati RG, Park MN, et al. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. J Control Release. 2016;238:231–41.

    Article  CAS  PubMed  Google Scholar 

  137. Tappa K, Jammalamadaka U, Ballard DH, Bruno T, Israel MR, Vemula H, et al. Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study. PLoS One. 2017;12:e0182929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Schell KH. Compliance issues and extemporaneous preparation of medications for pediatric patients. J Pharm Technol. 1992;8:158–61.

    Article  CAS  PubMed  Google Scholar 

  139. Gudeman J, Jozwiakowski M, Chollet J, Randell M. Potential risks of pharmacy compounding. Drugs RD. 2013;13:1–8.

    Article  Google Scholar 

  140. Khan MA. Some challenges in the development of pediatric formulations, FDA Pediatric advisory committee, 2012. Accessed on Oct 27, 2017 http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/PediatricAdvisoryCommittee/UCM289938.pdf.

  141. Ivanovska V, Rademaker CMA, van Dijk L, Mantel-Teeuwisse AK. Pediatric drug formulations: a review of challenges and progress. Pediatrics 2014;134(2). Accessed on Oct 27, 2017 http://pediatrics.aappublications.org/content/134/2/361.

    Article  PubMed  Google Scholar 

  142. FDA guidance for industry-hospital and health system compounding under the federal food, drug and cosmetic act, 2016.

  143. FDA guidance on pharmacy compounding of human drug products under section 503A of the federal food, drug and cosmetic act 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyaur Rahman.

Additional information

Guest Editors: Marilyn N. Martinez and Adel Karara

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, Z., Barakh Ali, S.F., Ozkan, T. et al. Additive Manufacturing with 3D Printing: Progress from Bench to Bedside. AAPS J 20, 101 (2018). https://doi.org/10.1208/s12248-018-0225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-018-0225-6

KEY WORDS

Navigation