[1]
|
K. M. Abualnaja, A block procedure with linear multi-step methods using Legendre poly- nomials for solving ODEs, Applied Mathematics, 2015, 6, 717-723. doi: 10.4236/am.2015.64067
CrossRef Google Scholar
|
[2]
|
K. M. Abualnaja, HPM for solving the time-fractional coupled Burger's equations, Journal of Advances in Mathematics, 2016, 20(4), 6133-6138.
Google Scholar
|
[3]
|
S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, New York, 2008.
Google Scholar
|
[4]
|
A. M. A. El-Sayed, A. Elsaid, I. L. El-Kalla and D. Hammad, A homotopy perturbation technique for solving FDEs in finite domains, Applied Mathematics and Computation, 2012, 218, 8329-8340. doi: 10.1016/j.amc.2012.01.057
CrossRef Google Scholar
|
[5]
|
M. Enelund and B. L. Josefson, Time-domain finite element analysis of viscoelastic structures with fractional derivatives constitutive relations, AIAA Journal, 1997, 35(10), 1630-1637. doi: 10.2514/2.2
CrossRef Google Scholar
|
[6]
|
M. M. Khader, Numerical treatment for solving the perturbed fractional PDEs using hybrid techniques, Journal of Computational Physics, 2013, 250, 565-573. doi: 10.1016/j.jcp.2013.05.032
CrossRef Google Scholar
|
[7]
|
M. M. Khader, On the numerical solutions for the fractional diffusion equation, Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 2535-2542. doi: 10.1016/j.cnsns.2010.09.007
CrossRef Google Scholar
|
[8]
|
M. M. Khader, The use of generalized Laguerre polynomials in spectral methods for fractional-order delay differential equations, Journal of Computational and Nonlinear Dynamics, 2013, 8, 041018, 1-5.
Google Scholar
|
[9]
|
M. M. Khader and A. S. Hendy, A numerical technique for solving fractional variational problems, Mathematical Methods in the Applied Sciences, 2013, 36(10), 1281-1289. doi: 10.1002/mma.v36.10
CrossRef Google Scholar
|
[10]
|
M. M. Khader and K. M. Saad, A numerical approach for solving the problem of biological invasion (fractional Fisher equation) using Chebyshev spectral collocation method, Chaos, Solitons and Fractals, 2018, 110, 169-177. doi: 10.1016/j.chaos.2018.03.018
CrossRef Google Scholar
|
[11]
|
M. M. Khader and K. M. Saad, On the numerical evaluation for studying the fractional KdV, KdV-Burger's, and Burger's equations, The European Physical Journal Plus, 2018, 133(335), 1-13.
Google Scholar
|
[12]
|
D. L. Logan, A First Course in the Finite Element Method, (Fourth Edition), Global Engineering: Christopher M. Shortt, Thomson, 2007.
Google Scholar
|
[13]
|
X. F. Liu, Y. Liu, Hong Li, Z. C. Fang and J. F. Wang, Finite element algorithm based on high-order time approximation for time fractional convection-diffusion equation, Journal of Applied Analysis and Computation, 2018, 8(1), 229-249.
Google Scholar
|
[14]
|
A. Diego Murio, Implicit finite difference approximation for time fractional diffusion equations, Computers and Mathematics with Applications, 2008, 56, 1138-1145. doi: 10.1016/j.camwa.2008.02.015
CrossRef Google Scholar
|
[15]
|
I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
Google Scholar
|
[16]
|
P. M. Prenter, Splines and Variational Methods, New York, John Wiley, 1975.
Google Scholar
|
[17]
|
S. Sahoo and S. S. Ray, The new exact solutions of variant types of time fractional coupled Schr$ddot{o}$dinger equations in plasma physics, Journal of Applied Analysis and Computation, 2017, 7(3), 824-840.
Google Scholar
|
[18]
|
S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London, 1993.https://www.researchgate.net/publication/239062573_Fractional_Integrals_and_Derivatives_Theory_and_Applications
Google Scholar
|
[19]
|
R. Sassaman and A. Biswas, 1-soliton solution of the perturbed Klein-Gordon equation, Physics Express, 2011, 1(1), 9-14.
Google Scholar
|
[20]
|
A. M. Wazwaz, Compacton solitons and periodic solutions for some forms of nonlinear Klein-Gordon equations, Chaos, Solitons and Fractals, 2006, 28(4), 1005-1013.
Google Scholar
|
[21]
|
E. Yusufoglu, The variational iteration method for studying the Klein-Gordon equation, Applied Mathematics Letters, 2008, 21(7), 669-674. doi: 10.1016/j.aml.2007.07.023
CrossRef Google Scholar
|