[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
2019 Volume 9 Issue 1
Article Contents

M. M. Khader, Khadijah M. Abualnaja. GALERKIN-FEM FOR OBTAINING THE NUMERICAL SOLUTION OF THE LINEAR FRACTIONAL KLEIN-GORDON EQUATION[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 261-270. doi: 10.11948/2019.261
Citation: M. M. Khader, Khadijah M. Abualnaja. GALERKIN-FEM FOR OBTAINING THE NUMERICAL SOLUTION OF THE LINEAR FRACTIONAL KLEIN-GORDON EQUATION[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 261-270. doi: 10.11948/2019.261

GALERKIN-FEM FOR OBTAINING THE NUMERICAL SOLUTION OF THE LINEAR FRACTIONAL KLEIN-GORDON EQUATION

  • In this paper, an efficient numerical method for solving the linear fractional Klein-Gordon equation (LFKGE) is introduced. The proposed method depends on the Galerkin finite element method (GFEM) using quadratic B-spline base functions and replaces the Caputo fractional derivative using $ L2 $ discretization formula. The introduced technique reduces LFKGE to a system of algebraic equations, which solved using conjugate gradient method. The study the stability analysis to the approximation obtained by the proposed scheme is given. To test the accuracy of the proposed method we evaluated the error norm $ L_{2} $. It is shown that the presented scheme is unconditionally stable. Numerical example is given to show the validity and the accuracy of the introduced algorithm.
    MSC: 41A30, 41A55, 65N12, 65N30
  • 加载中
  • [1] K. M. Abualnaja, A block procedure with linear multi-step methods using Legendre poly- nomials for solving ODEs, Applied Mathematics, 2015, 6, 717-723. doi: 10.4236/am.2015.64067

    CrossRef Google Scholar

    [2] K. M. Abualnaja, HPM for solving the time-fractional coupled Burger's equations, Journal of Advances in Mathematics, 2016, 20(4), 6133-6138.

    Google Scholar

    [3] S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, New York, 2008.

    Google Scholar

    [4] A. M. A. El-Sayed, A. Elsaid, I. L. El-Kalla and D. Hammad, A homotopy perturbation technique for solving FDEs in finite domains, Applied Mathematics and Computation, 2012, 218, 8329-8340. doi: 10.1016/j.amc.2012.01.057

    CrossRef Google Scholar

    [5] M. Enelund and B. L. Josefson, Time-domain finite element analysis of viscoelastic structures with fractional derivatives constitutive relations, AIAA Journal, 1997, 35(10), 1630-1637. doi: 10.2514/2.2

    CrossRef Google Scholar

    [6] M. M. Khader, Numerical treatment for solving the perturbed fractional PDEs using hybrid techniques, Journal of Computational Physics, 2013, 250, 565-573. doi: 10.1016/j.jcp.2013.05.032

    CrossRef Google Scholar

    [7] M. M. Khader, On the numerical solutions for the fractional diffusion equation, Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 2535-2542. doi: 10.1016/j.cnsns.2010.09.007

    CrossRef Google Scholar

    [8] M. M. Khader, The use of generalized Laguerre polynomials in spectral methods for fractional-order delay differential equations, Journal of Computational and Nonlinear Dynamics, 2013, 8, 041018, 1-5.

    Google Scholar

    [9] M. M. Khader and A. S. Hendy, A numerical technique for solving fractional variational problems, Mathematical Methods in the Applied Sciences, 2013, 36(10), 1281-1289. doi: 10.1002/mma.v36.10

    CrossRef Google Scholar

    [10] M. M. Khader and K. M. Saad, A numerical approach for solving the problem of biological invasion (fractional Fisher equation) using Chebyshev spectral collocation method, Chaos, Solitons and Fractals, 2018, 110, 169-177. doi: 10.1016/j.chaos.2018.03.018

    CrossRef Google Scholar

    [11] M. M. Khader and K. M. Saad, On the numerical evaluation for studying the fractional KdV, KdV-Burger's, and Burger's equations, The European Physical Journal Plus, 2018, 133(335), 1-13.

    Google Scholar

    [12] D. L. Logan, A First Course in the Finite Element Method, (Fourth Edition), Global Engineering: Christopher M. Shortt, Thomson, 2007.

    Google Scholar

    [13] X. F. Liu, Y. Liu, Hong Li, Z. C. Fang and J. F. Wang, Finite element algorithm based on high-order time approximation for time fractional convection-diffusion equation, Journal of Applied Analysis and Computation, 2018, 8(1), 229-249.

    Google Scholar

    [14] A. Diego Murio, Implicit finite difference approximation for time fractional diffusion equations, Computers and Mathematics with Applications, 2008, 56, 1138-1145. doi: 10.1016/j.camwa.2008.02.015

    CrossRef Google Scholar

    [15] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

    Google Scholar

    [16] P. M. Prenter, Splines and Variational Methods, New York, John Wiley, 1975.

    Google Scholar

    [17] S. Sahoo and S. S. Ray, The new exact solutions of variant types of time fractional coupled Schr$ddot{o}$dinger equations in plasma physics, Journal of Applied Analysis and Computation, 2017, 7(3), 824-840.

    Google Scholar

    [18] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London, 1993.https://www.researchgate.net/publication/239062573_Fractional_Integrals_and_Derivatives_Theory_and_Applications

    Google Scholar

    [19] R. Sassaman and A. Biswas, 1-soliton solution of the perturbed Klein-Gordon equation, Physics Express, 2011, 1(1), 9-14.

    Google Scholar

    [20] A. M. Wazwaz, Compacton solitons and periodic solutions for some forms of nonlinear Klein-Gordon equations, Chaos, Solitons and Fractals, 2006, 28(4), 1005-1013.

    Google Scholar

    [21] E. Yusufoglu, The variational iteration method for studying the Klein-Gordon equation, Applied Mathematics Letters, 2008, 21(7), 669-674. doi: 10.1016/j.aml.2007.07.023

    CrossRef Google Scholar

Figures(2)  /  Tables(1)

Article Metrics

Article views(2561) PDF downloads(908) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint