[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 142-148.doi: 10.11896/jsjkx.210400173

• 数据库&大数据&数据科学 • 上一篇    下一篇

增强列表信息和用户兴趣的个性化新闻推荐算法

蒲岍岍, 雷航, 李贞昊, 李晓瑜   

  1. 电子科技大学信息与软件工程学院 成都 610054
  • 收稿日期:2021-04-17 修回日期:2021-08-04 出版日期:2022-06-15 发布日期:2022-06-08
  • 通讯作者: 雷航(hlei@uestc.edu.cn)
  • 作者简介:(qianqianpu@std.uestc.edu.cn)
  • 基金资助:
    四川省科技计划项目(2018GFW0198)

Personalized News Recommendation Algorithm with Enhanced List Information and User Interests

PU Qian-qian, LEI Hang, LI Zhen-hao, LI Xiao-yu   

  1. School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • Received:2021-04-17 Revised:2021-08-04 Online:2022-06-15 Published:2022-06-08
  • About author:PU Qian-qian,born in 1998,postgra-duate.Her main research interests include machine learning and recommendation systems.
    LEI Hang,born in 1960,Ph.D,professor,Ph.D supervisor.His main research interests include embedded system and big data analysis.
  • Supported by:
    Sichuan Science and Technology Program(2018GFW0198).

摘要: 随着数据信息的不断扩增,点对点推荐模型作为深度学习中常用的推荐算法,能一定程度上解决信息过载的问题。但其仅通过单个用户与单个新闻预测得分,未利用新闻列表之间的交互信息。为了提升个性化推荐的质量,如何充分利用用户的历史信息、新闻的文本语义信息和列表信息等,以精准全面地表征用户和新闻是当前新闻推荐系统亟待解决的问题。对此,提出了一种增强列表信息和用户兴趣的新闻个性化推荐算法。利用用户历史点击新闻序列与新闻数据训练点对点模型进行特征构造,实现用户兴趣的个性化信息抽取,通过注意力网络处理用户与整个新闻列表特征来增强列表信息,实现直接对全局列表的推荐排序。实验结果表明,此种增强列表信息和用户兴趣的个性化推荐算法能够建模全局列表信息,与前沿的新闻推荐算法相比效果有显著提升。

关键词: 列表排序算法, 推荐算法, 新闻推荐, 用户个性化, 注意力网络

Abstract: With the continuous expansion of data and information,the point-to-point recommendation model,as a commonly used recommendation algorithm in deep learning,can deal with the problem of overloaded information to some extent.However,it predicts the recommendation score only by a single user and an isolated news,without using of the interactive information among rele-vant lists of news.To improve the quality of personalized recommendation,it is urgent for current news recommendation platforms to figure out how to accurately and comprehensively represent users and news by taking full advantage of users’ browsing history,semantic meaning of news as well as list information.In view of this,this paper puts forward a personalized news recommendation algorithm with improved list information and user interest.Based on the historically browsed news sequence of the user and news data,the point-to-point recommendation model is trained for representation construction to realize the tailored information extraction catering to the users’ interest,and the list information is enhanced by processing the characteristics of the user and news lists through the attention network,thus realizing the direct recommendation ranking of the lists as a whole.Experimental results show that this personalized recommendation algorithm with enhanced list information and user attraction can model global the comprehensive list information,presenting a significantly improved effect compared with cutting-edge news re-commendation algorithms at present.

Key words: Attention network, Listwise algorithm, News recommendation, Recommendation algorithm, User personalization

中图分类号: 

  • TP183
[1] LI L,WANG D D,ZHU S Z,et al.Personalized news recommendation:a review and an experimental investigation[J].Journal of Computer Science and Technology,2011,26(5):754-766.
[2] LIU J L,LI X G.Techniques for Recommendation System:A Survey[J].Computer Science,2020,47(7):47-55.
[3] DAS A S,DATAR M,GARG A,et al.Google News Personalization:Scalable Online Collaborative Filtering[C]//Proceedings of the 16th International Conference on World Wide Web(WWW 2007).Banff,Alberta,Canada:ACM Press,2007:271-280.
[4] KOREN Y.Factorization Meets the Neighborhood:a Multiface-ted Collaborative Filtering Model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining(KDD 2008).New York,USA:Association for Computing Machinery,2008:426-434.
[5] PHELAN O,MCCARTHY K,BENNETT M,et al.Terms of a Feather:Content-Based News Recommendation and Discovery Using Twitter[C]//Proceedings of the 33rd European Confe-rence on Advances in Information Retrieval(ECIR 2011).Berlin:Springer,2011:448-459.
[6] LI H,CAI F,LIAO Z.Content-based Filtering Recommendation Algorithm Using HMM[C]//2012 Fourth International Conference on Computational and Information Sciences.Chongqing,China:IEEE,2012:275-277.
[7] BANSAL T,DAS M,BHATTACHARYYA C.Content Driven User Profiling for Comment-Worthy Recommendations of News and Blog Articles[C]//Proceedings of the 9th ACM Conference on Recommender Systems(RecSys 2015).New York:Association for Computing Machinery,2015:195-202.
[8] WANG S Q,LI X X,SUN F Z,et al.Survey of Research on Personalized News Recommendation Techniques[J].Journal of Frontiers of Computer Science and Technology,2020,14(1):18-29.
[9] SHEN J,QIAO S J,HAN N,et al.Personalized Recommendation Model with Multiple Information Fusion[J].Journal of Chongqing University of Technology (Natural Science),2021,35(3):128-138.
[10] HAO R F,ZHANG G M,CHENG Y Q.Socialized Matrix Factorization Recommendation Algorithm with User Rating Prefe-rence Confidence[J].Journal of Chongqing University of Technology(Natural Science),2020,34(11):138-146.
[11] TIAN X,DING Q,LIAO Z H,et al.Survey on Deep Learning Based News Recommendation Algorithm[J].Journal of Frontiers of Computer Science and Technology,2021,15(6):971-998.
[12] TAO T Y,WANG Q Q,FU Y W,et al.Personalized Recommendation Algorithm for Financial News Based on Knowledge Graph[J].Computer Engineering,2021,47(6):98-103,114.
[13] AN M,WU F,WU C,et al.Neural News Recommendation with Long-and Short-Term User Representations[C]//The 57th Annual Meeting of the Association for Computational Linguistics(ACL 2019).Florence,Italy:Association for Computational Linguistics,2019:336-345.
[14] WU C,WU F,AN M,et al.Neural News Recommendation with Attentive Multi-View Learning[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence(IJCAI 2019).Macao,China:International Joint Confe-rences on Artificial Intelligence Organization,2019:3863-3869.
[15] WU C,WU F,GE S,et al.Neural News Recommendation with Multi-Head Self-Attention[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP 2019).Hong Kong,China:Asso-ciation for Computational Linguistics,2019:6388-6393.
[16] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems(NIPS 2017).Red Hook,NY,USA:Curran Associates Inc.,2017:6000-6010.
[17] BA J L,KIROS J R,HINTON G E.Layer Normalization[J].arXiv:1607.06450,2016.
[18] WU F,QIAO Y,CHEN J H,et al.MIND:A Large-Scale Dataset for News Recommendation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics(ACL 2020).Association for Computational Linguistics,2020:3597-3606.
[19] ZHUANG T,OU W,WANG Z.Globally Optimized Mutual Influence Aware Ranking in E-Commerce Search[C]//Procee-dings of the 27th International Joint Conference on Artificial Intelligence.AAAI Press,2018:3725-3731.
[20] AI Q,BI K,GUO J,et al.Learning a Deep Listwise Context Model for Ranking Refinement[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.New York,USA:Association for Computing Machinery,2018:135-144.
[1] 史殿习, 赵琛然, 张耀文, 杨绍武, 张拥军.
基于多智能体强化学习的端到端合作的自适应奖励方法
Adaptive Reward Method for End-to-End Cooperation Based on Multi-agent Reinforcement Learning
计算机科学, 2022, 49(8): 247-256. https://doi.org/10.11896/jsjkx.210700100
[2] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[3] 王美玲, 刘晓楠, 尹美娟, 乔猛, 荆丽娜.
基于评论和物品描述的深度学习推荐算法
Deep Learning Recommendation Algorithm Based on Reviews and Item Descriptions
计算机科学, 2022, 49(3): 99-104. https://doi.org/10.11896/jsjkx.210200170
[4] 董晓梅, 王蕊, 邹欣开.
面向推荐应用的差分隐私方案综述
Survey on Privacy Protection Solutions for Recommended Applications
计算机科学, 2021, 48(9): 21-35. https://doi.org/10.11896/jsjkx.201100083
[5] 赵金龙, 赵中英.
基于异质信息网络表示学习与注意力神经网络的推荐算法
Recommendation Algorithm Based on Heterogeneous Information Network Embedding and Attention Neural Network
计算机科学, 2021, 48(8): 72-79. https://doi.org/10.11896/jsjkx.200800226
[6] 曾伟良, 陈漪皓, 姚若愚, 廖睿翔, 孙为军.
时空图注意力网络在交叉口车辆轨迹预测的应用
Application of Spatial-Temporal Graph Attention Networks in Trajectory Prediction for Vehicles at Intersections
计算机科学, 2021, 48(6A): 334-341. https://doi.org/10.11896/jsjkx.200800066
[7] 熊旭东, 杜圣东, 夏琬钧, 李天瑞.
基于二分图卷积表示的推荐算法
Recommendation Algorithm Based on Bipartite Graph Convolution Representation
计算机科学, 2021, 48(4): 78-84. https://doi.org/10.11896/jsjkx.200400023
[8] 杜少华, 万怀宇, 武志昊, 林友芳.
融合文本序列和图信息的海关商品HS编码分类
Customs Commodity HS Code Classification Integrating Text Sequence and Graph Information
计算机科学, 2021, 48(4): 97-103. https://doi.org/10.11896/jsjkx.200900053
[9] 刘志鑫, 张泽华, 张杰.
基于多层次多视角的图注意力Top-N推荐方法
Top-N Recommendation Method for Graph Attention Based on Multi-level and Multi-view
计算机科学, 2021, 48(4): 104-110. https://doi.org/10.11896/jsjkx.200800027
[10] 陈源毅, 冯文龙, 黄梦醒, 冯思玲.
基于知识图谱的行为路径协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm of Behavior Route Based on Knowledge Graph
计算机科学, 2021, 48(11): 176-183. https://doi.org/10.11896/jsjkx.201000004
[11] 宁泽飞, 孙静宇, 王欣娟.
基于知识图谱和标签感知的推荐算法
Recommendation Algorithm Based on Knowledge Graph and Tag-aware
计算机科学, 2021, 48(11): 192-198. https://doi.org/10.11896/jsjkx.201000085
[12] 王瑞平, 贾真, 刘畅, 陈泽威, 李天瑞.
基于DeepFM的深度兴趣因子分解机网络
Deep Interest Factorization Machine Network Based on DeepFM
计算机科学, 2021, 48(1): 226-232. https://doi.org/10.11896/jsjkx.191200098
[13] 刘君良, 李晓光.
个性化推荐系统技术进展
Techniques for Recommendation System:A Survey
计算机科学, 2020, 47(7): 47-55. https://doi.org/10.11896/jsjkx.200200114
[14] 马海江.
基于卷积神经网络与约束概率矩阵分解的推荐算法
Recommendation Algorithm Based on Convolutional Neural Network and Constrained Probability Matrix Factorization
计算机科学, 2020, 47(6A): 540-545. https://doi.org/10.11896/JsJkx.191000172
[15] 周波.
融合语义模型的二分网络推荐算法
Bipartite Network Recommendation Algorithm Based on Semantic Model
计算机科学, 2020, 47(11A): 482-485. https://doi.org/10.11896/jsjkx.200400028
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!