[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2016, Vol. 43 ›› Issue (11): 160-163.doi: 10.11896/j.issn.1002-137X.2016.11.031

• 网络与通信 • 上一篇    下一篇

基于压缩感知的多目标定位中的测量矩阵设计

郭艳,钱鹏,李宁,孙保明   

  1. 解放军理工大学通信工程学院 南京210007,解放军理工大学通信工程学院 南京210007,解放军理工大学通信工程学院 南京210007,解放军理工大学通信工程学院 南京210007
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金项目(61571463,61371124,61272487,61472445,61201217)资助

Measurement Matrix Design for Multiple Target Localization Based on Compressive Sensing

GUO Yan, QIAN Peng, LI Ning and SUN Bao-ming   

  • Online:2018-12-01 Published:2018-12-01

摘要: 根据传感器网络中定位问题天然的稀疏性,研究了基于压缩感知理论的多目标定位方法。首先将目标位置信息表示成一个稀疏向量,将定位问题转化为向量估计问题。通过部署少量传感器测量接收信号的强度值,求解一个1范数最优化问题便可精确地重构出位置向量。相对于当前压缩感知定位中常用的稀疏随机测量矩阵,提出了一种改进的测量矩阵设计方法,指示传感器节点进行有规律、均匀的部署。仿真结果表明,相较于传统随机测量矩阵,改进测量矩阵在定位精确度和稳定性上都体现了巨大优势。

关键词: 多目标定位,测量矩阵设计,压缩感知,传感器网络

Abstract: A compressive sensing based multiple target localization approach was proposed by exploiting the intrinsic sparse nature of the localization problem in wireless sensor networks.The sparsity in our localization approach is reflected by the locations of targets,which can be formulated as a sparse vector.We used the received signal strength (RSS) to achieve the target localization.It only requires a small number of measurements for accurately recovering the location vector by solving the 1-minimization program.Moreover,we proposed an improved measurement matrix design me-thod,which determines the distribution of sensors.Simulation results demonstrate that the localization accuracy and stability of the proposed measurement matrix design method have huge advantage in comparison with the random measurement matrix method widely used in CS-based localization.

Key words: Multiple target localization,Measurement matrix design,Compressive sensing,Wireless sensor networks

[1] He Shou-qian.Application of modern optimization techniques in wireless sensor networks[J].Computer Science,2014,41(6A):329-333(in Chinese) 何受倩.现代优化技术在无线传感器网络中的应用[J].计算机科学,2014,41(6A):329-333
[2] Panwar A,Killar S A.Localization schemes in wireless sensor networks[C]∥Proc 2nd International Conference on Advanced Computing & Communication Technologies.Rohmk,Haryana:IEEE,2012:443-449
[3] Qian Zhi-hong,Wang Yi-jun.Internet of Things oriented Wireless Sensor Networks Review[J].Journal of Electronics & Information Technology,2013,35(1):215-227(in Chinese) 钱志鸿,王义君.面向物联网的无线传感器网络综述[J].电子与信息学报,2013,35(1):215-227
[4] Pivato P,Palopoli L,Petri D.Accuracy of RSS-Based Centroid Localization Algorithms in an Indoor Environment[J].IEEE Trans.Instrum.Meas.,2011,60(10):3451-3460
[5] Emmanuel J C,Michael B W.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30
[6] Cevher V,Duarte M F,Baraniuk R G.Distributed target localization via spatial sparsity[C]∥EUSIPCO,2008.Lausanne,Switzerland,2008:25-29
[7] Feng Chen,Shahrokh V,Tan Zhen-hui.Multiple target localization using compressive sensing[C]∥IEEE Global Telecommunications Conference.2009:1-6
[8] Feng Chen,Shahrokh V,Tan Zhen-hui.Compressive SensingBased Positioning Using RSS of WLAN Access Point[C]∥ IEEE INFOCOM Proceedings.2010:1-9
[9] Nasif A O,Mark B L.Measurement Clustering Criteria for Localization of Multiple Transmitters[C]∥Proc.Conference on Information Systems and Sciences.Baltimore,2009:341-345
[10] Zhang X,Cheng N,Zhang Y,et al.Sparse target counting and localization in sensor networks based on compressive sensing[C]∥IEEE INFOCOM Proceedings.2011:2255-2263
[11] Wang Yong,Wang Xue,Sun Xin-yao.Target localization inwireless sensor networks using sparse signal reconstruction [J].Chinese Journal of Scientific Instrument,2012,33(2):362-368(in Chinese) 王勇,王雪,孙欣尧.基于稀疏信号重构的无线传感网络目标定位[J].仪器仪表学报,2012,33(2):362-368
[12] He Feng-xing,Yu Zhi-jun,Liu Hai-tao.Multiple target localization via compressed sensing in wireless sensor networks[J].Journal of Electronics and Information Technology,2012,34(3):716-721(in Chinese) 何风行,余志军,刘海涛.基于压缩感知的无线传感器网络多目标定位算法[J].电子与信息学报,2012,34(3):716-721
[13] Deng Jin-gang,Cui Qi-mei,Zhang Xue-fei,et al.CompressiveSensing Based Indoor Positioning with Denosing and Filtering in LF Space[C]∥IEEE International Symposium on Personal,Indoor and Mobile Radio Communications.2012:2477-2482
[14] Cand`es E J.Compressive sampling[J].Int.Congress of Mathematicians,Madrid,Spain,2006,17(2):1433-1452
[15] Chen S S,Donoho D L,Saunders M A.Atomic Decomposition by Basis Pursuit[J].SIAM Journal on Scientific Computing,1998,20(1):33-61
[16] IEEE standard online resource provided by IEEE 802.15 WPAN.http://www.ieee802.org/15/pub/TG4.html

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!