计算机科学 ›› 2016, Vol. 43 ›› Issue (2): 101-104.doi: 10.11896/j.issn.1002-137X.2016.02.023
• 2015年中国计算机学会人工智能会议 • 上一篇 下一篇
庞天杰,赵兴旺
PANG Tian-jie and ZHAO Xing-wang
摘要: 聚类个数的确定是聚类分析中一个富有挑战性的难题。现有的聚类个数确定方法主要采用随机选取初始聚类中心的策略,导致聚类过程中迭代次数的稳定性不强。基于此,在利用含有类标签的先验信息优化初始类中心的基础上,提出了一种基于先验信息的混合数据聚类个数确定算法。实验证明,该算法是有效的。
[1] MacQueen J B.Some methods for classification and analysis of multivariate observations[C]∥ Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability.Berkeley:University of California Press,1967:281-297 [2] Ruspini E R.A new approach to clustering [J].Information and Control,1969,5(1):22-32 [3] Dempster A P,Laird N M,Rubin D B.Maximum likelihood from incomplete data via the EM algorithm [J].Journal of the Royal Statistical Society,1977,9(1):1-38 [4] Camastra F,Verri A.A novel kernel method for clustering [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):801-805 [5] Ester M,Kriegel H P,Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise [C]∥Proceedings of the 2th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.1996,226-231 [6] Sun Hao-jun,Wang Sheng-rui,Jiang Qing-shan.FCM-basedmodel selection algorithms for determining the number of clusters[J].Pattern Recognition,2004,7(10):2027-2037 [7] Bai Liang,Liang Ji-ye,Dang Chuang-yin.An initialization me-thod to simultaneously find initial cluster centers and the number of clusters for clustering categorical data[J].Knowledge-Based Systems,2011,4(6):785-795 [8] Liang Ji-ye,Zhao Xing-wang,Li De-yu,et al.Determining the number of clusters using information entropy for mixed data[J].Pattern Recognition,2012,5:2251-2265 [9] Tou J,Gonzales R.Pattern Recognition Principles[M].MA:Addison-Wesley.Reading,1974 [10] Pal N R,Bezdek J C.On clustering validity for the fuzzy c-means model[J].IEEE Transactions on Fuzzy Systems,1995,3(3):370-379 [11] Xiao Yu,Yu Jian.Semi-Supervised Clustering Based on Affinity Propagation Algorithm[J].Journal of Software,2008,9(11):2803-2813(in Chinese) 肖宇,于剑.基于近邻传播算法的半监督聚类[J].软件学报,2008,9(11):2803-2813 [12] Bilenko M,Basu S,Mooney R J.Integrating constraints andmetric learning in semi-supervised clustering [C]∥ Russ G,Dale S,eds.Proc.of the 21st Int’l Conf.on Machine Learning (ICML 2004).Banff:ACM Press,2004:81-88 [13] Basu S,Banerjee A,Mooney R J.Semi-supervised clustering by seeding[C]∥ Claude S,Achim GH,eds.Proc.of 19th Int’l Conf.on Machine Learning (ICML 2002).Sydney:Morgan Kaufmann Publishers,2002:27-34 [14] Kamvar S D,Klein D,Manning C D.Spectral learning[C]∥ Proc.of the 18th Int’l Joint Conf.on Artificial Intelligence (IJCAI 2003).Acapulco,Mexico:Morgan Kaufmann Publishers,2003:561-566 |
No related articles found! |
|