[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2016, Vol. 43 ›› Issue (Z6): 125-129.doi: 10.11896/j.issn.1002-137X.2016.6A.030

• 模式识别与图像处理 • 上一篇    下一篇

融合深度与肤色特征的自适应手部跟踪算法

钮晨霄,孙瑾,丁永晖   

  1. 南京航空航天大学民航学院 南京210016南京航空航天大学飞行模拟与先进培训工程技术研究中心 南京210016,南京航空航天大学民航学院 南京210016南京航空航天大学飞行模拟与先进培训工程技术研究中心 南京210016,南京航空航天大学民航学院 南京210016南京航空航天大学飞行模拟与先进培训工程技术研究中心 南京210016
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受研究生创新基地(实验室)开放基金(kfjj201447),南京航空航天大学基本科研业务费青年科技创新基金(NS2013066)资助

Adaptive Hand Tracking Based on Fusing Depth and Skin Features

NIU Chen-xiao, SUN Jin and DING Yong-hui   

  • Online:2018-12-01 Published:2018-12-01

摘要: 手部跟踪技术是实现自然人机交互的关键。针对现有跟踪方法易受光照、环境等影响及鲁棒性差的不足,提出一种融合深度与肤色特征的自适应手部跟踪算法。考虑手部运动过程的形变,该算法首先利用深度平滑连续性选取深度阈值以实现跟踪区域的自适应尺度变化,获得手部候选区域。在此基础上建立YCbCr空间肤色归一化直方图,在粒子滤波框架下将跟踪问题转换为贝叶斯估计问题,基于最大后验准则确定手部位置,并通过监测粒子重要性权值的方差解决跟踪失效问题,实现复杂观测环境下的鲁棒跟踪。实验结果表明,该跟踪算法可适应不同复杂环境,鲁棒性良好。

关键词: 深度特征,粒子滤波,自适应手部跟踪,肤色归一化直方图

Abstract: Hand tracking is key to realize natural human-computer interaction.The existing hand tracking algorithms for human-computer interaction can be easily affected by illumination and have poor robustness.In this paper,an adaptive hand tracking by the fusion of depth and skin color features was put forward.Considering the deformation of hand,the algorithm uses the depth threshold to achieve adaptive changes of tracking region with the continuity and smoothness of depth feature and obtains the hand alternative regions.Then,via skin color feature of YCbCr space,the skin normalized histograms were established to describe the alternative regions.Under the framework of particle filter,the hand tracking is converted into Bayes estimation problem and the algorithm determines the hand position based on the maximum a posterior (MAP).The variance of particle weights was monitored to solve the problem of tracking failure.Experimental results show that,the proposed algorithm can achieve accurate and robust tracking performance in real-time with complex background.

Key words: Depth feature,Particle filter,Adaptive hand tracking,Skin normalized histogram

[1] Kass M,Witkin A,Terzopoulos D.Snakes:Active contour mo-dels[J].International journal of computer vision,1988,1(4):321-331
[2] Wachs J P,Klsch M,Stern H,et al.Vision-based hand-gesture applications[J].Communications of the ACM,2011,54(2):60-71
[3] 陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207
[4] Chai D,Ngan K N.Locating facial region of a head-and-shoulders color image[C]∥1998 Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.1998:124-129
[5] 雷明,董济扬.一种可变光照条件下的肤色检测算法[J].计算机工程与应用,2002,8(24):123-125
[6] Wang R Y,Popovi′ J.Real-time hand-tracking with a color glove[J].ACM Transactions on Graphics (TOG),2009:63
[7] Bellon O R,Silva L.New improvements to range image segmentation by edge detection[J].Signal Processing Letters,IEEE,2002,9(2):43-45
[8] Biswas K,Basu S K.Gesture Recognition using Microsoft Kinect[C]∥2011 5th International Conference on Automation,Robo-tics and Applications (ICARA).2011:100-103
[9] Raheja J L,Chaudhary A,Singal K.Tracking of fingertips and centers of palm using kinect[C]∥2011 Third International Conference on Computational Intelligence,Modelling and Simulation (CIMSiM).2011:248-252
[10] 汤勇,顾宏斌,周来.交互系统中实时手势分割及指尖检测方法[J].光电工程,2010,7(7):145-150
[11] 何小磊.基于深度信息和彩色图像的手势识别[D].武汉:华中科技大学,2012
[12] 杨全,彭进业.采用 SIFT-BoW 和深度图像信息的中国手语识别研究[J].计算机科学,2014,1(2):302-307
[13] 陈子毫.基于深度信息的手势检测与跟踪[D].广东:华南理工大学,2012
[14] 邓瑞,周玲玲,应忍冬.基于 Kinect 深度信息的手势提取与识别研究[J].计算机应用研究,2013,30(4):1263-1265
[15] 王法胜,鲁明羽,赵清杰,等.粒子滤波算法[J].计算机学报,2014(8):1679-94
[16] Swain M J.Interactive Indexing Into Image Databases[J].Sto-rage & Retrieval for Image & Video Databases,1993,1908:95--103
[17] Barla A,Odone F,Verri A.Histogram intersection kernel forimage classification[C]∥2003 International Conference on Image Processing.2003,III(2):513-516
[18] 胡士强,敬忠良.粒子滤波原理及其应用[M].北京:科学出版社,2010
[19] 朱志宇.粒子滤波算法及其应用[M].北京:科学出版社,2010

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!