Person Re-Identification Using Maintain Translation Invariance and F-triplet Loss
Abstract
References
Index Terms
- Person Re-Identification Using Maintain Translation Invariance and F-triplet Loss
Recommendations
A loss combination based deep model for person re-identification
The Convolutional Neural Network (CNN) has significantly improved the state-of-the-art in person re-identification (re-ID). In the existing available identification CNN model, the softmax loss function is employed as the supervision signal to train the ...
Deep feature embedding learning for person re-identification based on lifted structured loss
Person re-identification (re-id) aims at matching the same individual in videos captured by multiple cameras, and much progress has been made in recent years due to large scale pedestrian data sets and deep learning-based techniques. In this paper, we ...
Person re-identification by the asymmetric triplet and identification loss function
Person re-identification(re-id) aims to match the same individuals across different non-overlapping camera views. In this paper, we analyze the effectiveness of two widely used triplet loss and softmax loss on person re-id task. We conclude that the ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
- Research
- Refereed limited
Funding Sources
- National Natural Science Foundation of China
- Beijing Natural Science Foundation
Conference
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 11Total Downloads
- Downloads (Last 12 months)11
- Downloads (Last 6 weeks)3
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign inFull Access
View options
View or Download as a PDF file.
PDFeReader
View online with eReader.
eReaderHTML Format
View this article in HTML Format.
HTML Format