[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3632775.3662161acmotherconferencesArticle/Chapter ViewAbstractPublication Pagese-energyConference Proceedingsconference-collections
research-article
Open access

Intrinsic Explainable Artificial Intelligence Using Trainable Spatial Weights on Numerical Weather Predictions

Published: 31 May 2024 Publication History

Abstract

Addressing the volatility of renewable energies like solar and wind is crucial for the energy system’s stability and optimal utilization of renewable energies. Accurate energy forecasts are important to improve scheduling. Electrical demand and renewable energies are weather-dependent and Numerical Weather Predictions have proven to be beneficial for energy forecasts due to their fine-grained spatial resolution. State-of-the-art Deep Learning approaches for energy forecasting are black-box models. However, decisions in energy systems depend on energy forecasts, and, thus, it is important that models are explainable and trustworthy. Explainable Artificial Intelligence techniques exist that add explainability to energy forecasting models, but all existing methods are only post-hoc or do not use weather data on large spatial areas. This paper introduces a novel approach to forecast energy that scales and adds intrinsic explainability by design. Therefore, we use trainable spatial weights to make accurate forecasts on large spatial areas. The trained weights can be interpreted spatially to enhance explainability and increase trust. Furthermore, the spatial weights enable a wide range of future work, including postprocessing, subregion forecasting, hierarchical learning, and spatial-temporal weights.

References

[1]
José R. Andrade and Ricardo J. Bessa. 2017. Improving Renewable Energy Forecasting With a Grid of Numerical Weather Predictions. IEEE Transactions on Sustainable Energy 8, 4 (2017), 1571–1580. https://doi.org/10.1109/TSTE.2017.2694340 Conference Name: IEEE Transactions on Sustainable Energy.
[2]
John Bridle. 1989. Training Stochastic Model Recognition Algorithms as Networks can Lead to Maximum Mutual Information Estimation of Parameters. In Advances in Neural Information Processing Systems, D. Touretzky (Ed.). Vol. 2. Morgan-Kaufmann.
[3]
Carlo Buontempo, Samantha N. Burgess, Dick Dee, Bernard Pinty, Jean-Noël Thépaut, Michel Rixen, Samuel Almond, David Armstrong, Anca Brookshaw, Angel Lopez Alos, Bill Bell, Cedric Bergeron, Chiara Cagnazzo, Edward Comyn-Platt, Eduardo Damasio-Da-Costa, Anabelle Guillory, Hans Hersbach, András Horányi, Julien Nicolas, Andre Obregon, Eduardo Penabad Ramos, Baudouin Raoult, Joaquín Muñoz-Sabater, Adrian Simmons, Cornel Soci, Martin Suttie, Freja Vamborg, James Varndell, Stijn Vermoote, Xiaobo Yang, and Juan Garcés de Marcilla. 2022. The Copernicus Climate Change Service: Climate Science in Action. Bulletin of the American Meteorological Society 103, 12 (2022), E2669–E2687. https://doi.org/10.1175/BAMS-D-21-0315.1
[4]
Kunjin Chen, Ziyu He, Kunlong Chen, Jun Hu, and Jinliang He. 2017. Solar energy forecasting with numerical weather predictions on a grid and convolutional networks. In IEEE Conference on Energy Internet and Energy System Integration (EI2). 1–5. https://doi.org/10.1109/EI2.2017.8245549
[5]
L. Clarke, Y.-M. Wei, A. De La Vega Navarro, A. Garg, A.N. Hahmann, S. Khennas, I.M.L. Azevedo, A. Löschel, A.K. Singh, L. Steg, G. Strbac, and K. Wada. 2022. Energy Systems. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, and J. Malley (Eds.). Cambridge University Press, Cambridge, UK and New York, NY, USA, Book section 6. https://doi.org/10.1017/9781009157926.008
[6]
C. P. Corey. 1949. The Effects of Weather upon the Electric Power Systems. Bulletin of the American Meteorological Society 30, 7 (1949), 239–241. jstor:26258178
[7]
Matteo De Felice, Andrea Alessandri, and Paolo M. Ruti. 2013. Electricity demand forecasting over Italy: Potential benefits using numerical weather prediction models. Electric Power Systems Research 104 (2013), 71–79. https://doi.org/10.1016/j.epsr.2013.06.004
[8]
Henry A. Dryar. 1944. The Effect of Weather on the System Load. Electrical Engineering 63, 12 (Dec. 1944), 1006–1013. https://doi.org/10.1109/EE.1944.6440647
[9]
Jorge Á. González Ordiano, Simon Waczowicz, Veit Hagenmeyer, and Ralf Mikut. 2018. Energy forecasting tools and services. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8, 2 (2018), e1235. https://doi.org/10.1002/widm.1235
[10]
Jun Han and Claudio Moraga. 1995. The influence of the sigmoid function parameters on the speed of backpropagation learning. In From Natural to Artificial Neural Computation (Berlin, Heidelberg) (Lecture Notes in Computer Science), José Mira and Francisco Sandoval (Eds.). Springer, 195–201. https://doi.org/10.1007/3-540-59497-3_175
[11]
Santosh Harish, Nishmeet Singh, and Rahul Tongia. 2020. Impact of Temperature on Electricity Demand: Evidence from Delhi and Indian States. Energy Policy 140 (2020), 111445. https://doi.org/10.1016/j.enpol.2020.111445
[12]
Matthias Hertel, Simon Ott, Benjamin Schäfer, Ralf Mikut, Veit Hagenmeyer, and Oliver Neumann. 2022. Evaluation of Transformer Architectures for Electrical Load Time-Series Forecasting. In Proceedings - 32. Workshop Computational Intelligence: Berlin, 1. - 2. Dezember 2022. Hrsg.: H. Schulte, F. Hoffmann; R. Mikut. 93.
[13]
Shuai Hu, Yue Xiang, Hongcai Zhang, Shanyi Xie, Jianhua Li, Chenghong Gu, Wei Sun, and Junyong Liu. 2021. Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction. Applied Energy 293 (2021), 116951. https://doi.org/10.1016/j.apenergy.2021.116951
[14]
Dae-Young Kim and Bum-Suk Kim. 2023. Contribution of meteorological factors based on explainable artificial intelligence in predicting wind farm power production using machine learning algorithms. Journal of Renewable and Sustainable Energy 15, 1 (2023), 013307. https://doi.org/10.1063/5.0127519
[15]
Dávid Markovics and Martin János Mayer. 2022. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. Renewable and Sustainable Energy Reviews 161 (2022), 112364. https://doi.org/10.1016/j.rser.2022.112364
[16]
Oliver Neumann, Marian Turowski, Ralf Mikut, Veit Hagenmeyer, and Nicole Ludwig. 2023. Using weather data in energy time series forecasting: the benefit of input data transformations. Energy Informatics 6, 1 (2023), 44. https://doi.org/10.1186/s42162-023-00299-8
[17]
Marco Pierro, Matteo De Felice, Enrico Maggioni, David Moser, Alessandro Perotto, Francesco Spada, and Cristina Cornaro. 2017. Data-driven upscaling methods for regional photovoltaic power estimation and forecast using satellite and numerical weather prediction data. Solar Energy 158 (2017), 1026–1038. https://doi.org/10.1016/j.solener.2017.09.068
[18]
Nicolai Bo Vanting, Zheng Ma, and Bo Nørregaard Jørgensen. 2021. A scoping review of deep neural networks for electric load forecasting. Energy Informatics 4 (2021), 49. https://doi.org/10.1186/s42162-021-00148-6
[19]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems, Vol. 30. Curran Associates, Inc.
[20]
Dorina Werling, Benedikt Heidrich, Hüseyin K. Çakmak, and Veit Hagenmeyer. 2022. Towards line-restricted dispatchable feeders using probabilistic forecasts for PV-dominated low-voltage distribution grids. In Proceedings of the Thirteenth ACM International Conference on Future Energy Systems(e-Energy ’22). Association for Computing Machinery, 395–400. https://doi.org/10.1145/3538637.3538868
[21]
Frauke Wiese, Ingmar Schlecht, Wolf-Dieter Bunke, Clemens Gerbaulet, Lion Hirth, Martin Jahn, Friedrich Kunz, Casimir Lorenz, Jonathan Mühlenpfordt, Juliane Reimann, and Wolf-Peter Schill. 2019. Open Power System Data – Frictionless data for electricity system modelling. Applied Energy 236 (2019), 401–409. https://doi.org/10.1016/j.apenergy.2018.11.097
[22]
Mao Yang, Chuanyu Xu, Yuying Bai, Miaomiao Ma, and Xin Su. 2023. Investigating black-box model for wind power forecasting using local interpretable model-agnostic explanations algorithm: Why should a model be trusted?CSEE Journal of Power and Energy Systems (2023), 1–14. https://doi.org/10.17775/CSEEJPES.2021.07470

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
e-Energy '24: Proceedings of the 15th ACM International Conference on Future and Sustainable Energy Systems
June 2024
704 pages
ISBN:9798400704802
DOI:10.1145/3632775
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 31 May 2024

Check for updates

Author Tags

  1. deep learning
  2. electrical demand
  3. energy forecasting
  4. energy transition
  5. explainable artificial intelligence
  6. neural networks
  7. numerical weather predictions
  8. solar power
  9. wind power

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

e-Energy '24

Acceptance Rates

Overall Acceptance Rate 160 of 446 submissions, 36%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 128
    Total Downloads
  • Downloads (Last 12 months)128
  • Downloads (Last 6 weeks)26
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media