[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3631700.3665241acmconferencesArticle/Chapter ViewAbstractPublication PagesumapConference Proceedingsconference-collections
short-paper
Open access

Modelling Users for User Modelling: Dynamic Personas for Improved Personalisation in Digital Behaviour Change

Published: 28 June 2024 Publication History

Abstract

Behaviour change, crucial in health interventions, demands an understanding of the end user’s psychological, social, and environmental contexts, often overlooked in user modelling. This paper advocates integrating behaviour change theories into user models to improve personalisation based on individual characteristics. We introduce a novel, enriched with psychological theories, framework for using dynamic user Personas within Digital Behaviour Change Interventions, allowing adaptation to evolving user behaviours and preferences. The dynamic user Personas offer a detailed representation that accounts for the complex stages of behavioural change and COM-B patterns. We also explore the transition in user modelling from expert-driven to data-driven methods, highlighting the importance of acknowledging both interpersonal and intrapersonal variations in user behaviours. Our proposed semi-automated system model merges these modelling methods, enhancing personalisation in health interventions by addressing human behavioural complexities. Additionally, we discuss the ethical and privacy issues involved, ensuring responsible and secure data management. In conclusion, our approach conceptually links behaviour change, interaction design, and user modelling, setting a foundation for further empirical research and digital health applications.

References

[1]
Oluwande Adewoyin, Janet Wesson, and Dieter Vogts. 2022. User Modelling to support Behavioural Modelling in Smart Environments. In Proceedings - 3rd International Conference on Next Generation Computing Applications, NextComp 2022. Institute of Electrical and Electronics Engineers Inc.https://doi.org/10.1109/NextComp55567.2022.9932209
[2]
Tamara Adlin and John Pruitt. 2010. The Essential Persona Lifecycle: Your Guide to Building and Using Personas. Elsevier. 1–224 pages. https://doi.org/10.1016/C2009-0-62475-2
[3]
Plinio Thomaz Aquino and Lucia Vilela Leite Filgueiras. 2005. User modeling with personas. In ACM International Conference Proceeding Series, Vol. 124. 277–282. https://doi.org/10.1145/1111360.1111388
[4]
Silvia Baldiris, Sabine Graf, and Ramón Fabregat. 2011. Dynamic user modeling and adaptation based on learning styles for supporting semi-automatic generation of IMS learning design. In Proceedings of the 2011 11th IEEE International Conference on Advanced Learning Technologies, ICALT 2011. 218–220. https://doi.org/10.1109/ICALT.2011.70
[5]
Åsa Blomquist and Mattias Arvola. 2002. Personas in action: Ethnography in an interaction design team. ACM International Conference Proceeding Series 31 (2002), 197–200. https://doi.org/10.1145/572020.572044
[6]
Nathalie Bonnardel and Nicolas Pichot. 2019. Enhancing collaborative creativity with virtual dynamic personas. (2019).
[7]
Roberto Casas, Rubén Blasco Marín, Alexia Robinet, Armando Roy Delgado, Armando Roy Yarza, John McGinn, Richard Picking, and Vic Grout. 2008. User modelling in ambient intelligence for elderly and disabled people. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5105 LNCS (2008), 114–122. https://doi.org/10.1007/978-3-540-70540-6_15/COVER
[8]
Raymond B. Cattell. 1952. The three basic factor-analytic research designs–their interrelations and derivatives. Psychological Bulletin 49, 5 (9 1952), 499–520. https://doi.org/10.1037/H0054245
[9]
Alan Cooper, Robert Reimann, David Cronin, Christopher Noessel, Jason Csizmadi, and Doug Lemoine. 2014. About Face The Essentials of Interaction Design Fourth Edition.
[10]
Cristina Cortis, Anna Puggina, Caterina Pesce, Katina Aleksovska, Christoph Buck, Con Burns, Greet Cardon, Angela Carlin, Chantal Simon, Donatella Ciarapica, Giancarlo Condello, Tara Coppinger, Sara D’Haese, Marieke de Craemer, Andrea Di Blasio, Sylvia Hansen, Licia Iacoviello, Johann Issartel, Pascal Izzicupo, Lina Jaeschke, Martina Kanning, Aileen Kennedy, Fiona Chun Man Ling, Agnes Luzak, Giorgio Napolitano, Julie Anne Nazare, Grainne O’Donoghue, Camille Perchoux, Tobias Pischon, Angela Polito, Alessandra Sannella, Holger Schulz, Rhoda Sohun, Astrid Steinbrecher, Wolfgang Schlicht, Walter Ricciardi, Loriana Castellani, Ciaran Macdonncha, Laura Capranica, and Stefania Boccia. 2017. Psychological determinants of physical activity across the life course: A "DEterminants of DIet and Physical ACtivity" (DEDIPAC) umbrella systematic literature review. PLoS ONE 12, 8 (2017), 23. https://doi.org/10.1371/JOURNAL.PONE.0182709
[11]
Mihaela Curmei, Andreas A. Haupt, Benjamin Recht, and Dylan Hadfield-Menell. 2022. Towards Psychologically-Grounded Dynamic Preference Models. In RecSys 2022 - Proceedings of the 16th ACM Conference on Recommender Systems, Vol. 14. Association for Computing Machinery, Inc, 35–48. https://doi.org/10.1145/3523227.3546778
[12]
Paul De Bra. 2017. Challenges in User Modeling and Personalization. IEEE Intelligent Systems 32, 5 (9 2017), 76–80. https://doi.org/10.1109/MIS.2017.3711638
[13]
Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, Vol. 1. Association for Computational Linguistics (ACL), 4171–4186. https://arxiv.org/abs/1810.04805v2
[14]
Farhat Ul Farhat-Ul-Ain, Vladimir Tomberg, and Hugo Placido Da Silva. 2022. Towards Adapting Questionnaires for Long-Term Online Dynamic Monitoring of Patients. In Proceedings of the IEEE International Conference on Requirements Engineering. IEEE Computer Society, 30–37. https://doi.org/10.1109/REW56159.2022.00015
[15]
Gerhard Fischer. 2001. User modeling in human-computer interaction. User Modeling and User-Adapted Interaction 11, 1-2 (2001), 65–86. https://doi.org/10.1023/A:1011145532042/METRICS
[16]
Yong Shian Goh, Jenna Qing Yun Ow Yong, Bernice Qian Hui Chee, Jonathan Han Loong Kuek, and Cyrus Su Hui Ho. 2022. Machine Learning in Health Promotion and Behavioral Change: Scoping Review., e35831 pages. https://doi.org/10.2196/35831
[17]
Mark P Graus and Bruce Ferwerda. 2019. Theory-grounded user modeling for personalized HCl. Personalized Human-Computer Interaction (2019), 3–29. https://doi.org/10.1515/9783110552485-001/MACHINEREADABLECITATION/RIS
[18]
Anita M Honka, Hannu Nieminen, Heidi Simila, Jouni Kaartinen, and Mark Van Gils. 2022. A Comprehensive User Modeling Framework and a Recommender System for Personalizing Well-Being Related Behavior Change Interventions: Development and Evaluation. IEEE Access 10 (2022), 116766–116783. https://doi.org/10.1109/ACCESS.2022.3218776
[19]
Silvan Hornstein, Kirsten Zantvoort, Ulrike Lueken, Burkhardt Funk, and Kevin Hilbert. 2023. Personalization strategies in digital mental health interventions: a systematic review and conceptual framework for depressive symptoms. Frontiers in Digital Health 5 (2023). https://doi.org/10.3389/FDGTH.2023.1170002/FULL
[20]
Santiago Hors-Fraile, Octavio Rivera-Romero, Francine Schneider, Luis Fernandez-Luque, Francisco Luna-Perejon, Anton Civit-Balcells, and Hein de Vries. 2018. Analyzing recommender systems for health promotion using a multidisciplinary taxonomy: A scoping review. International journal of medical informatics 114 (2018), 143–155. https://doi.org/10.1016/J.IJMEDINF.2017.12.018
[21]
Jakub Konečný, Brendan McMahan, and Daniel Ramage. 2015. Federated Optimization:Distributed Optimization Beyond the Datacenter. (11 2015). https://arxiv.org/abs/1511.03575v1 http://arxiv.org/abs/1511.03575
[22]
Joseph C Kvedar, Alexander L Fogel, Eric Elenko, and Daphne Zohar. 2016. Digital medicine’s march on chronic disease. Nature Biotechnology 2016 34:3 34, 3 (2016), 239–246. https://doi.org/10.1038/nbt.3495
[23]
Cynthia LeRouge, Jiao Ma, Sweta Sneha, and Kristin Tolle. 2013. User profiles and personas in the design and development of consumer health technologies. International Journal of Medical Informatics 82, 11 (2013), e251–e268. https://doi.org/10.1016/J.IJMEDINF.2011.03.006
[24]
A. Madureira, B. Cunha, J. P. Pereira, S. Gomes, I. Pereira, J. M. Santos, and A. Abraham. 2003. Using personas for supporting user modeling on scheduling systems. In 2014 14th International Conference on Hybrid Intelligent Systems, HIS 2014. Institute of Electrical and Electronics Engineers Inc., 279–284. https://doi.org/10.1109/HIS.2014.7086212
[25]
Judith Masthoff and Julita Vassileva. 2023. Personalized Persuasion for Behaviour Change. In Personalized Human-Computer Interaction, Walter de Gruyter GmbH Co KG (Ed.). 205–235.
[26]
Susan Michie, Maartje M van Stralen, and Robert West. 2011. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation science : IS 6, 1 (2011). https://doi.org/10.1186/1748-5908-6-42
[27]
Susan Michie, Robert West, Rona Campbell, Jamie Brown, and Heather Gainforth. 2014. ABC of behaviour change theories. (2014), 499. https://books.google.com/books/about/ABC_of_Behaviour_Change_Theories.html?hl=et&id=_4nGuQEACAAJ
[28]
Inbal Nahum-Shani, Shawna N Smith, Bonnie J Spring, Linda M Collins, Katie Witkiewitz, Ambuj Tewari, and Susan A Murphy. 2018. Just-in-time adaptive interventions (JITAIs) in mobile health: Key components and design principles for ongoing health behavior support. Annals of Behavioral Medicine 52, 6 (2018), 446–462. https://doi.org/10.1007/s12160-016-9830-8
[29]
Zhenni Ni, Zhizhen Yao, Yunmei Liu, and Yuxing Qian. 2021. Dynamic user needs modeling based on social support in online health communities. In ACM International Conference Proceeding Series. Association for Computing Machinery, 22–27. https://doi.org/10.1145/3478905.3478910
[30]
Amelie Nolte, Karolin Lueneburg, Dieter P. Wallach, and Nicole Jochems. 2022. Creating Personas for Signing User Populations: An Ability-Based Approach to User Modelling in HCI. In ASSETS 2022 - Proceedings of the 24th International ACM SIGACCESS Conference on Computers and Accessibility. Association for Computing Machinery, Inc, 2022. https://doi.org/10.1145/3517428.3550364
[31]
Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. 2019. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 6464 (10 2019), 447–453. https://doi.org/10.1126/science.aax2342
[32]
Guangyuan Piao and John G. Breslin. 2018. Inferring user interests in microblogging social networks: a survey. User Modeling and User-Adapted Interaction 28, 3 (8 2018), 277–329. https://doi.org/10.1007/s11257-018-9207-8
[33]
James O Prochaska and Carlo C DiClemente. 1983. Stages and processes of self-change of smoking: Toward an integrative model of change. Journal of Consulting and Clinical Psychology 51, 3 (1983), 390–395. https://doi.org/10.1037/0022-006X.51.3.390
[34]
John S. Pruitt and Tamara Adlin. 2006. The Persona Lifecycle: Keeping People in Mind Throughout Product Design. Elsevier. 1–724 pages. https://doi.org/10.1016/B978-0-12-566251-2.X5000-X
[35]
Nicole Redvers, Kyla Wright, Jamie Hartmann-Boyce, and Sarah Tonkin-Crine. 2023. Physicians’ views of patient–planetary health co-benefit prescribing: a mixed methods systematic review., e407-e417 pages. https://doi.org/10.1016/S2542-5196(23)00050-5
[36]
Emmanouil G Spanakis, Silvina Santana, Manolis Tsiknakis, Kostas Marias, Vangelis Sakkalis, Antonio Teixeira, Joris H Janssen, Henri De Jong, and Chariklia Tziraki. 2016. Technology-Based Innovations to Foster Personalized Healthy Lifestyles and Well-Being: A Targeted Review. Journal of medical Internet research 18, 6 (2016). https://doi.org/10.2196/JMIR.4863
[37]
Dieudonne Tchuente. 2022. User Modeling and Profiling in Information Systems. Journal of Global Information Management 30, 1 (1 2022), 1–25. https://doi.org/10.4018/jgim.307116
[38]
Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models. (7 2023). https://arxiv.org/abs/2307.09288v2 http://arxiv.org/abs/2307.09288
[39]
Geoffrey I. Webb, Michael J. Pazzani, and Daniel Billsus. 2001. Machine learning for user modeling. User Modeling and User-Adapted Interaction 11, 1-2 (2001), 19–29. https://doi.org/10.1023/A:1011117102175
[40]
Shannon Wongvibulsin, Seth S Martin, Suchi Saria, Scott L Zeger, and Susan A Murphy. 2020. An Individualized, Data-Driven Digital Approach for Precision Behavior Change. American Journal of Lifestyle Medicine 14, 3 (2020), 289–293. https://doi.org/10.1177/1559827619843489/ASSET/IMAGES/LARGE/10.1177_1559827619843489-FIG1.JPEG
[41]
Lucy Yardley, Tanzeem Choudhury, Kevin Patrick, and Susan Michie. 2016. Current Issues and Future Directions for Research Into Digital Behavior Change Interventions. American Journal of Preventive Medicine 51, 5 (2016), 814–815. https://doi.org/10.1016/j.amepre.2016.07.019

Index Terms

  1. Modelling Users for User Modelling: Dynamic Personas for Improved Personalisation in Digital Behaviour Change

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      UMAP Adjunct '24: Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization
      June 2024
      662 pages
      ISBN:9798400704666
      DOI:10.1145/3631700
      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 28 June 2024

      Check for updates

      Author Tags

      1. Digital behaviour change interventions
      2. Dynamic Persona
      3. Health behaviour change
      4. User modelling

      Qualifiers

      • Short-paper
      • Research
      • Refereed limited

      Conference

      UMAP '24
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 162 of 633 submissions, 26%

      Upcoming Conference

      UMAP '25

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 285
        Total Downloads
      • Downloads (Last 12 months)285
      • Downloads (Last 6 weeks)94
      Reflects downloads up to 11 Dec 2024

      Other Metrics

      Citations

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media