[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3626111.3628194acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Open access

What do LLMs need to Synthesize Correct Router Configurations?

Published: 28 November 2023 Publication History

Abstract

We investigate whether Large Language Models (e.g., GPT-4) can synthesize correct router configurations with reduced manual effort. We find GPT-4 works very badly by itself, producing promising draft configurations but with egregious errors in topology, syntax, and semantics. Our strategy, that we call Verified Prompt Programming, is to combine GPT-4 with verifiers, and use localized feedback from the verifier to automatically correct errors. Verification requires a specification and actionable localized feedback to be effective. We show results for two use cases: translating from Cisco to Juniper configurations on a single router, and implementing a no-transit policy on multiple routers. While human input is still required, if we define the leverage as the number of automated prompts to the number of human prompts, our experiments show a leverage of 10X for Juniper translation, and 6X for implementing the no-transit policy, ending with verified configurations.

References

[1]
B. Bollobas. The man who taught infinity: how G.H. Hardy tamed Srinivasa Ramanujan's genius. https://theconversation.com/the-man-who-taught-infinity-how-gh-hardy\-tamed-srinivasa-ramanujans-genius-57585, 2023.
[2]
E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT '21, page 610--623, New York, NY, USA, 2021. Association for Computing Machinery.
[3]
S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang. Sparks of artificial general intelligence: Early experiments with GPT-4, 2023.
[4]
M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba. Evaluating large language models trained on code, 2021.
[5]
DeepLearning.AI. ChatGPT Prompt Engineering for Developers. https://learn.deeplearning.ai/chatgpt-prompt-eng/lesson/1/introduction, 2023.
[6]
A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan, and T. Millstein. A general approach to network configuration analysis. NSDI'15, page 469--483, USA, 2015. USENIX Association.
[7]
github. Github CoPilot: Your AI Pair Programmer. https://github.com/features/copilot, 2023.
[8]
N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Rajamani, and R. Sharma. Jigsaw: Large language models meet program synthesis. In Proceedings of the 44th International Conference on Software Engineering, ICSE '22, page 1219--1231, New York, NY, USA, 2022. Association for Computing Machinery.
[9]
Kani Rust Verifier Blog. Writing Code with ChatGPT? Improve it with Kani. https://model-checking.github.io/kani-verifier-blog/2023/05/01/writing-code-with-chatgpt-improve-it-with-kani.html, 2023.
[10]
Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno, A. D. Lago, T. Hubert, P. Choy, C. de Masson d'Autume, I. Babuschkin, X. Chen, P.-S. Huang, J. Welbl, S. Gowal, A. Cherepanov, J. Molloy, D. J. Mankowitz, E. S. Robson, P. Kohli, N. de Freitas, K. Kavukcuoglu, and O. Vinyals. Competition-level code generation with AlphaCode. Science, 378(6624):1092--1097, dec 2022.
[11]
A. Tang, R. Beckett, K. Jayaraman, T. Millstein, and G. Varghese. Lightyear: Using modularity to scale BGP control plane verification. SIGCOMM '23, to appear. Association for Computing Machinery, 2023.
[12]
A. Tang, S. K. R. Kakarla, R. Beckett, E. Zhai, M. Brown, T. Millstein, and G. Varghese. Campion: Debugging router configuration differences. SIGCOMM '21, page 748--761, New York, NY, US, 2021. Association for Computing Machinery.
[13]
J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang. Software testing with large language model: Survey, landscape, and vision, 2023.

Cited By

View all
  • (2024)A Survey of Text-Matching TechniquesInformation10.3390/info1506033215:6(332)Online publication date: 5-Jun-2024
  • (2024)Large Language Models Meet Next-Generation Networking Technologies: A ReviewFuture Internet10.3390/fi1610036516:10(365)Online publication date: 7-Oct-2024
  • (2024)Proposal of User Interface Based on Heavy User Usage Analysis in LLM ServiceArchives of Design Research10.15187/adr.2024.08.37.4.28737:4(287-313)Online publication date: 31-Aug-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
HotNets '23: Proceedings of the 22nd ACM Workshop on Hot Topics in Networks
November 2023
306 pages
ISBN:9798400704154
DOI:10.1145/3626111
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 November 2023

Check for updates

Author Tags

  1. CoSynth
  2. large language models (LLMs)
  3. network verification and synthesis

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

HotNets '23
Sponsor:
HotNets '23: The 22nd ACM Workshop on Hot Topics in Networks
November 28 - 29, 2023
MA, Cambridge, USA

Acceptance Rates

Overall Acceptance Rate 110 of 460 submissions, 24%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)816
  • Downloads (Last 6 weeks)103
Reflects downloads up to 12 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Survey of Text-Matching TechniquesInformation10.3390/info1506033215:6(332)Online publication date: 5-Jun-2024
  • (2024)Large Language Models Meet Next-Generation Networking Technologies: A ReviewFuture Internet10.3390/fi1610036516:10(365)Online publication date: 7-Oct-2024
  • (2024)Proposal of User Interface Based on Heavy User Usage Analysis in LLM ServiceArchives of Design Research10.15187/adr.2024.08.37.4.28737:4(287-313)Online publication date: 31-Aug-2024
  • (2024)Localized Explanations for Automatically Synthesized Network ConfigurationsProceedings of the 23rd ACM Workshop on Hot Topics in Networks10.1145/3696348.3696888(52-59)Online publication date: 18-Nov-2024
  • (2024)SurfOS: Towards an Operating System for Programmable Radio EnvironmentsProceedings of the 23rd ACM Workshop on Hot Topics in Networks10.1145/3696348.3696861(132-141)Online publication date: 18-Nov-2024
  • (2024)ShieldGPT: An LLM-based Framework for DDoS MitigationProceedings of the 8th Asia-Pacific Workshop on Networking10.1145/3663408.3663424(108-114)Online publication date: 3-Aug-2024
  • (2024)NetConfEval: Can LLMs Facilitate Network Configuration?Proceedings of the ACM on Networking10.1145/36562962:CoNEXT2(1-25)Online publication date: 13-Jun-2024
  • (2024)PrivacyOracle: Configuring Sensor Privacy Firewalls with Large Language Models in Smart Built Environments2024 IEEE Security and Privacy Workshops (SPW)10.1109/SPW63631.2024.00028(239-245)Online publication date: 23-May-2024
  • (2024)Advanced Deep Learning Models for 6G: Overview, Opportunities, and ChallengesIEEE Access10.1109/ACCESS.2024.341890012(133245-133314)Online publication date: 2024
  • (2024)Clover: Closed-Loop Verifiable Code GenerationAI Verification10.1007/978-3-031-65112-0_7(134-155)Online publication date: 17-Jul-2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media