[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Efficient Implementation of Modern Entropy Stable and Kinetic Energy Preserving Discontinuous Galerkin Methods for Conservation Laws

Published: 15 December 2023 Publication History

Abstract

Many modern discontinuous Galerkin (DG) methods for conservation laws make use of summation by parts operators and flux differencing to achieve kinetic energy preservation or entropy stability. While these techniques increase the robustness of DG methods significantly, they are also computationally more demanding than standard weak form nodal DG methods. We present several implementation techniques to improve the efficiency of flux differencing DG methods that use tensor product quadrilateral or hexahedral elements, in 2D or 3D, respectively. Focus is mostly given to CPUs and DG methods for the compressible Euler equations, although these techniques are generally also useful for other physical systems, including the compressible Navier-Stokes and magnetohydrodynamics equations. We present results using two open source codes, Trixi.jl written in Julia and FLUXO written in Fortran, to demonstrate that our proposed implementation techniques are applicable to different code bases and programming languages.

References

[1]
Rémi Abgrall, Jan Nordström, Philipp Öffner, and Svetlana Tokareva. 2020. Analysis of the SBP-SAT stabilization for finite element methods part I: Linear problems. J Sci. Comput. 85, 2 (2020), 1–29. DOI:
[2]
Oskar Ålund and Jan Nordström. 2019. Encapsulated high order difference operators on curvilinear non-conforming grids. J. Comput. Phys. 385 (2019), 209–224. DOI:
[3]
M. Bergmann, C. Morsbach, and G. Ashcroft. 2020. Assessment of split form nodal discontinuous Galerkin schemes for the LES of a low pressure turbine profile. In Direct and Large Eddy Simulation XII (ERCOFTACSeries), Vol. 27. Springer Nature, Cham, 365–371. DOI:
[4]
Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. Julia: A fresh approach to numerical computing. SIAM Rev. 59, 1 (2017), 65–98. DOI:
[5]
Mark H. Carpenter, Travis C. Fisher, Eric J. Nielsen, and Steven H. Frankel. 2014. Entropy stable spectral collocation schemes for the Navier-Stokes equations: Discontinuous interfaces. SIAM J. Scient. Comput. 36, 5 (2014), B835–B867. DOI:
[6]
Jesse Chan. 2018. On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362 (2018), 346–374. DOI:
[7]
Jesse Chan. 2019. Skew-symmetric entropy stable modal discontinuous Galerkin formulations. J Sci. Comput. 81, 1 (2019), 459–485. DOI:
[8]
Jesse Chan, David C. Del Rey Fernández, and Mark H. Carpenter. 2019. Efficient entropy stable Gauss collocation methods. SIAM J. Scient. Comput. 41, 5 (2019), A2938–A2966. DOI:
[9]
Praveen Chandrashekar. 2013. Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations. Commun. Comput. Phys. 14, 5 (2013), 1252–1286. DOI:
[10]
Tianheng Chen and Chi-Wang Shu. 2017. Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345 (2017), 427–461. DOI:
[11]
Jared Crean, Jason E. Hicken, David C. Del Rey Fernández, David W. Zingg, and Mark H. Carpenter. 2018. Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. 356 (2018), 410–438. DOI:
[12]
Chris Elrod. 2021. Roadmap to Julia BLAS and Linear Algebra. Retrieved from https://www.youtube.com/watch?v=KQ8nvlURX4M
[13]
David C. Del Rey Fernández, Pieter D. Boom, and David W. Zingg. 2014. A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. 266 (2014), 214–239. DOI:
[14]
David C. Del Rey Fernández, Jason E. Hicken, and David W. Zingg. 2014. Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95 (2014), 171–196. DOI:
[15]
Travis C. Fisher, Mark H. Carpenter, Jan Nordström, Nail K. Yamaleev, and Charles Swanson. 2013. Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions. J. Comput. Phys. 234 (2013), 353–375. DOI:
[16]
Ulrik Skre Fjordholm, Siddhartha Mishra, and Eitan Tadmor. 2012. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50, 2 (2012), 544–573. DOI:
[17]
David Flad and Gregor Gassner. 2017. On the use of kinetic energy preserving DG-schemes for large eddy simulation. J. Comput. Phys. 350 (2017), 782–795. DOI:
[18]
Agner Fog. 2021. Instruction tables. (082021). Retrieved from https://www.agner.org/optimize/instruction_tables.pdf
[19]
Gregor Josef Gassner. 2013. A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Scient. Comput. 35, 3 (2013), A1233–A1253. DOI:
[20]
Gregor Josef Gassner. 2014. A kinetic energy preserving nodal discontinuous Galerkin spectral element method. Int. J. Numer. Meth. Fluids 76, 1 (2014), 28–50. DOI:
[21]
Gregor Josef Gassner and Andrea D. Beck. 2013. On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dynam. 27, 3-4 (2013), 221–237. DOI:
[22]
Gregor Josef Gassner and David A. Kopriva. 2011. A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods. SIAM J. Scient. Comput. 33, 5 (2011), 2560–2579. DOI:
[23]
Gregor J. Gassner and Andrew R. Winters. 2021. A novel robust strategy for discontinuous Galerkin methods in computational fluid mechanics: Why? When? What? Where? Front. Phys. 8 (2021), 612. DOI:
[24]
Gregor Josef Gassner, Andrew Ross Winters, and David A. Kopriva. 2016. Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible euler equations. J. Comput. Phys. 327 (2016), 39–66. DOI:
[25]
Jean-Luc Guermond, Martin Kronbichler, Matthias Maier, Bojan Popov, and Ignacio Tomas. 2022. On the implementation of a robust and efficient finite element-based parallel solver for the compressible Navier-Stokes equations. Comput. Meth. Appl. Mechan. Eng. 389 (022022), 114250. DOI:
[26]
Amiram Harten, Peter D. Lax, and Bram van Leer. 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 1 (1983), 35–61. DOI:
[27]
Jan S. Hesthaven and Tim Warburton. 2007. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications(Texts in Applied Mathematics, Vol. 54). Springer Science & Business Media, New York. DOI:
[28]
Jason E. Hicken. 2020. Entropy-stable, high-order summation-by-parts discretizations without interface penalties. J Sci. Comput. 82, 2 (2020), 50. DOI:
[29]
Jason E. Hicken, David C. Del Rey Fernández, and David W. Zingg. 2016. Multidimensional summation-by-parts operators: General theory and application to simplex elements. SIAM J. Scient. Comput. 38, 4 (2016), A1935–A1958. DOI:
[30]
H. T. Huynh. 2007. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In 18th AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics. DOI:
[31]
Farzad Ismail and Philip L. Roe. 2009. Affordable, entropy-consistent euler flux functions II: Entropy production at shocks. J. Comput. Phys. 228, 15 (2009), 5410–5436. DOI:
[32]
Antony Jameson. 2008. Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J Sci. Comput. 34, 2 (2008), 188–208. DOI:
[33]
Christopher A. Kennedy and Mark H. Carpenter. 1994. Fourth Order 2N-Storage Runge-Kutta Schemes. Technical Memorandum NASA-TM-109112. NASA, NASA Langley Research Center, Hampton, VA.
[34]
Bjoern F. Klose, Gustaaf B. Jacobs, and David A. Kopriva. 2020. Assessing standard and kinetic energy conserving volume fluxes in discontinuous Galerkin formulations for marginally resolved Navier-Stokes flows. Comput. Fluids 205 (2020), 104557. DOI:
[35]
David A. Kopriva. 2006. Metric identities and the discontinuous spectral element method on curvilinear meshes. J Sci. Comput. 26, 3 (2006), 301–327. DOI:
[36]
David A. Kopriva. 2009. Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer Science & Business Media, New York. DOI:
[37]
David A. Kopriva and Gregor Josef Gassner. 2010. On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J Sci. Comput. 44, 2 (2010), 136–155. DOI:
[38]
Nico Krais, Andrea Beck, Thomas Bolemann, Hannes Frank, David Flad, Gregor Gassner, Florian Hindenlang, Malte Hoffmann, Thomas Kuhn, Matthias Sonntag, and Claus-Dieter Munz. 2021. FLEXI: A high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws. Comput. Math. Applic. 81 (2021), 186–219. DOI:
[39]
Heinz-Otto Kreiss and Godela Scherer. 1974. Finite element and finite difference methods for hyperbolic partial differential equations. In Mathematical Aspects of Finite Elements in Partial Differential Equations, Carl de Boor (Ed.). Academic Press, New York, 195–212.
[40]
Philippe G. LeFloch, Jean-Marc Mercier, and Christian Rohde. 2002. Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40, 5 (2002), 1968–1992. DOI:
[41]
Matthias Maier and Martin Kronbichler. 2021. Efficient parallel 3D computation of the compressible euler equations with an invariant-domain preserving second-order finite-element scheme. ACM Trans. Parallel Comput. 8, 3 (2021), 1–30. DOI:
[42]
Jan Nordström and Martin Björck. 2001. Finite volume approximations and strict stability for hyperbolic problems. Appl. Numer. Math. 38, 3 (2001), 237–255. DOI:
[43]
Jan Nordström, Karl Forsberg, Carl Adamsson, and Peter Eliasson. 2003. Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Appl. Numer. Math. 45, 4 (2003), 453–473. DOI:
[44]
Matteo Parsani, Radouan Boukharfane, Irving Reyna Nolasco, David C. Del Rey Fernández, Stefano Zampini, Bilel Hadri, and Lisandro Dalcin. 2021. High-order accurate entropy-stable discontinuous collocated Galerkin methods with the summation-by-parts property for compressible CFD frameworks: Scalable SSDC algorithms and flow solver. J. Comput. Phys. 424 (2021), 109844. DOI:
[45]
Christopher Rackauckas and Qing Nie. 2017. DifferentialEquations.jl—A performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5, 1 (2017), 15. DOI:
[46]
Hendrik Ranocha. 2017. Shallow water equations: Split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM—Int. J. Geomath. 8, 1 (042017), 85–133. DOI:
[47]
Hendrik Ranocha. 2018. Comparison of some entropy conservative numerical fluxes for the euler equations. J Sci. Comput. 76, 1 (072018), 216–242. DOI:arXiv:1701.02264
[48]
Hendrik Ranocha. 2018. Generalised Summation-by-parts Operators and Entropy Stability of Numerical Methods for Hyperbolic Balance Laws. Ph.D. Dissertation. TU Braunschweig.
[49]
Hendrik Ranocha. 2020. Entropy conserving and kinetic energy preserving numerical methods for the euler equations using summation-by-parts operators. In Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018 (Lecture Notes in Computational Science and Engineering), Spencer J. Sherwin, David Moxey, Joaquim Peiró, Peter E. Vincent, and Christoph Schwab (Eds.), Vol. 134. Springer, Cham, 525–535. DOI:
[50]
Hendrik Ranocha. 2021. SummationByPartsOperators.jl: A Julia library of provably stable semidiscretization techniques with mimetic properties. J. Open Source Softw. 6, 64 (082021), 3454. DOI:
[51]
Hendrik Ranocha, Lisandro Dalcin, Matteo Parsani, and David I. Ketcheson. 2021. Optimized Runge-Kutta methods with automatic step size control for compressible computational fluid dynamics. Commun. Appl. Math. Comput. (112021). DOI:
[52]
Hendrik Ranocha and Gregor J. Gassner. 2021. Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes. Commun. Appl. Math. Comput. (082021). DOI:
[53]
Hendrik Ranocha, Dimitrios Mitsotakis, and David I. Ketcheson. 2021. A broad class of conservative numerical methods for dispersive wave equations. Commun. Comput. Phys. 29, 4 (022021), 979–1029. DOI:
[54]
Hendrik Ranocha, Philipp Öffner, and Thomas Sonar. 2016. Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311 (042016), 299–328. DOI:
[55]
Hendrik Ranocha, Michael Schlottke-Lakemper, Jesse Chan, Andrés M. Rueda-Ramírez, Andrew R. Winters, Florian Hindenlang, and Gregor J. Gassner. 2021. Reproducibility repository for efficient implementation of modern entropy stable and kinetic energy preserving discontinuous Galerkin methods for conservation laws. DOI:
[56]
Hendrik Ranocha, Michael Schlottke-Lakemper, Andrew Ross Winters, Erik Faulhaber, Jesse Chan, and Gregor J. Gassner. 2022. Adaptive numerical simulations with trixi.jl: A case study of Julia for scientific computing. Proc. JuliaCon Conf. 1, 1 (012022), 77. DOI:arXiv:2108.06476
[57]
Tiago Tamissa Ribeiro. 2020. Final Report on HLST Project OPT-DG2. Final Report. Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching, Germany.
[58]
Marcin Rogowski, Lisandro Dalcin, Matteo Parsani, and David E. Keyes. 2022. Performance analysis of relaxation Runge-Kutta methods. Int. J. High Perform. Comput. Applic. (052022). DOI:
[59]
Diego Rojas, Radouan Boukharfane, Lisandro Dalcin, David C. Del Rey Fernández, Hendrik Ranocha, David E. Keyes, and Matteo Parsani. 2021. On the robustness and performance of entropy stable discontinuous collocation methods. J. Comput. Phys. 426 (22021), 109891. DOI:
[60]
Andrés M. Rueda-Ramírez, Sebastian Hennemann, Florian J. Hindenlang, Andrew R. Winters, and Gregor J. Gassner. 2021. An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part II: Subcell finite volume shock capturing. J. Comput. Phys. 444 (2021), 110580. DOI:
[61]
Michael Schlottke-Lakemper, Andrew R. Winters, Hendrik Ranocha, and Gregor J. Gassner. 2021. A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics. J. Comput. Phys. 442 (062021), 110467. DOI:
[62]
Nao Shima, Yuichi Kuya, Yoshiharu Tamaki, and Soshi Kawai. 2020. Preventing spurious pressure oscillations in split convective form discretization for compressible flows. J. Comput. Phys. 427 (2020), 110060. DOI:
[63]
Chi-Wang Shu. 1997. Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws. Final Report NASA/CR-97-206253. NASA, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA.
[64]
Björn Sjögreen and H. C. Yee. 2018. High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows. J. Comput. Phys. 364 (2018), 153–185. DOI:
[65]
Björn Sjögreen, Helen C. Yee, and Dmitry Kotov. 2017. Skew-symmetric splitting and stability of high order central schemes. In Journal of Physics: Conference Series, Vol. 837. IOP Publishing, 012019. DOI:
[66]
Bo Strand. 1994. Summation by parts for finite difference approximations for \(d/dx\). J. Comput. Phys. 110, 1 (1994), 47–67. DOI:
[67]
Magnus Svärd and Jan Nordström. 2014. Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268 (2014), 17–38. DOI:
[68]
Eitan Tadmor. 1987. The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49, 179 (1987), 91–103. DOI:
[69]
Eitan Tadmor. 2003. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12 (2003), 451–512. DOI:
[70]
Ping-Tak Peter Tang. 1990. Table-driven implementation of the logarithm function in IEEE floating-point arithmetic. ACM Trans. Math. Softw. 16, 4 (1990), 378–400. DOI:
[71]
P. D. Thomas and C. K. Lombard. 1979. Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17, 10 (1979), 1030–1037. DOI:
[72]
Eleuterio F. Toro. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin. DOI:
[73]
Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A lightweight performance-oriented tool suite for x86 multicore environments. In 39th International Conference on Parallel Processing Workshops. IEEE, 207–216. DOI:
[74]
Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An insightful visual performance model for multicore architectures. Commun. ACM 52, 4 (2009), 65–76. DOI:
[75]
Niklas Wintermeyer, Andrew Ross Winters, Gregor Josef Gassner, and David A. Kopriva. 2017. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. J. Comput. Phys. 340 (2017), 200–242. DOI:
[76]
Andrew Ross Winters and Gregor Josef Gassner. 2015. A comparison of two entropy stable discontinuous Galerkin spectral element approximations for the shallow water equations with non-constant topography. J. Comput. Phys. 301 (2015), 357–376. DOI:
[77]
Andrew R. Winters, Rodrigo C. Moura, Gianmarco Mengaldo, Gregor J. Gassner, Stefanie Walch, Joaquim Peiro, and Spencer J. Sherwin. 2018. A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations. J. Comput. Phys. 372 (2018), 1–21. DOI:

Cited By

View all
  • (2025)An entropy-stable discontinuous Galerkin discretization of the ideal multi-ion magnetohydrodynamics systemJournal of Computational Physics10.1016/j.jcp.2024.113655523(113655)Online publication date: Feb-2025
  • (2025)On the robustness of high-order upwind summation-by-parts methods for nonlinear conservation lawsJournal of Computational Physics10.1016/j.jcp.2024.113471520(113471)Online publication date: Jan-2025
  • (2024)Multiderivative time integration methods preserving nonlinear functionals via relaxationCommunications in Applied Mathematics and Computational Science10.2140/camcos.2024.19.2719:1(27-56)Online publication date: 17-Jun-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 49, Issue 4
December 2023
226 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/3637452
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 December 2023
Online AM: 27 September 2023
Accepted: 18 September 2023
Revised: 03 April 2023
Received: 20 December 2021
Published in TOMS Volume 49, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Flux differencing
  2. entropy stability
  3. conservation laws
  4. summation by parts
  5. discontinuous Galerkin

Qualifiers

  • Research-article

Funding Sources

  • Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  • Mathematics Münster: Dynamics-Geometry-Structure
  • Daimler und Benz Stiftung
  • European Research Council
  • Vetenskapsrådet, Sweden
  • United States National Science Foundation

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)316
  • Downloads (Last 6 weeks)36
Reflects downloads up to 12 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2025)An entropy-stable discontinuous Galerkin discretization of the ideal multi-ion magnetohydrodynamics systemJournal of Computational Physics10.1016/j.jcp.2024.113655523(113655)Online publication date: Feb-2025
  • (2025)On the robustness of high-order upwind summation-by-parts methods for nonlinear conservation lawsJournal of Computational Physics10.1016/j.jcp.2024.113471520(113471)Online publication date: Jan-2025
  • (2024)Multiderivative time integration methods preserving nonlinear functionals via relaxationCommunications in Applied Mathematics and Computational Science10.2140/camcos.2024.19.2719:1(27-56)Online publication date: 17-Jun-2024
  • (2024)A Comparative Study of Different Sets of Variables in a Discontinuous Galerkin Method with Entropy Balance EnforcementInternational Journal of Computational Fluid Dynamics10.1080/10618562.2024.231053737:6(487-508)Online publication date: 28-Apr-2024
  • (2024)Efficient entropy-stable discontinuous spectral-element methods using tensor-product summation-by-parts operators on triangles and tetrahedraJournal of Computational Physics10.1016/j.jcp.2024.113360(113360)Online publication date: Aug-2024
  • (2024)Entropy-split multidimensional summation-by-parts discretization of the Euler and compressible Navier-Stokes equationsJournal of Computational Physics10.1016/j.jcp.2024.112821502:COnline publication date: 25-Jun-2024

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media