[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3689943.3695048acmconferencesArticle/Chapter ViewAbstractPublication PagesccsConference Proceedingsconference-collections
research-article
Open access

RAD: Realistic Anonymization of Images Using Stable Diffusion

Published: 21 November 2024 Publication History

Abstract

Many of the deep learning models currently driving the advancements in computer vision, expected to transform our society, require extensive training data. However, privacy regulations require explicit consent or anonymization of personal data, and traditional anonymization methods degrade data quality, thus hindering model performance. To address this challenge, we introduce the Realistic Anonymization using Diffusion (RAD) framework, which uses Stable Diffusion and ControlNet to produce high-quality synthetic images. RAD's three-step pipeline maintains contextual integrity and data utility, achieving superior image quality compared to previous GAN-based methods. We evaluated RAD's privacy preservation and data utility through face recognition accuracy, a segmentation task, and human assessment. RAD anonymized faces in 95.5% of cases, with high photo-realism ratings from human evaluators. Segmentation tasks on both original and anonymized images showed minimal performance drop, confirming RAD's high utility. Our analysis also identifies the strengths and weaknesses of using Stable Diffusion for full-body anonymization in various conditions. In summary, our work advances the understanding of high-utility anonymized data generation, and demonstrates that RAD can effectively balance privacy and utility.

References

[1]
Stability AI. [n.,d.]. Stable Diffusion Launch Announcement. https://stability.ai/news/stable-diffusion-announcement
[2]
Hamed Alqahtani, Manolya Kavakli-Thorne, and Gulshan Kumar. 2021. Applications of Generative Adversarial Networks (GANs): An Updated Review. Archives of Computational Methods in Engineering, Vol. 28, 2 (01 3 2021), 525--552. https://doi.org/10.1007/s11831-019-09388-y
[3]
Thangapavithraa Balaji, Patrick Blies, Georg Göri, Raphael Mitsch, Marcel Wasserer, and Torsten Schön. 2021. Temporally coherent video anonymization through GAN inpainting. CoRR, Vol. abs/2106.02328 (2021). https://doi.org/10.48550/arXiv.2106.02328
[4]
Pascal Birnstill, Daoyuan Ren, and Jürgen Beyerer. 2015. A User Study on Anonymization Techniques for Smart Video Surveillance. In Proceedings of the 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). 1--6. https://doi.org/10.1109/AVSS.2015.7301805
[5]
Karla Brkic, Ivan Sikiric, Tomislav Hrkac, and Zoran Kalafatic. 2017. I Know That Person: Generative Full Body and Face De-identification of People in Images. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1319--1328. https://doi.org/10.1109/CVPRW.2017.173
[6]
Tim Brooks, Bill Peebles, Connor Homes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, Clarence Wing Yin Ng, Ricky Wang, and Aditya Ramesh. 2024. Video generation models as world simulators. https://openai.com/research/video-generation-models-as-world-simulators
[7]
Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja Balle, Daphne Ippolito, and Eric Wallace. 2023. Extracting training data from diffusion models. In USENIX Security Symposium. 5253--5270.
[8]
Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2024. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3213--3223. https://doi.org/10.1109/CVPR.2016.350
[9]
Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. 2023. Diffusion models in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023). https://doi.org/10.1109/TPAMI.2023.3261988
[10]
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial networks. Commun. ACM, Vol. 63, 11 (10 2020), 139--144. https://doi.org/10.1145/3422622
[11]
Simon Hanisch, Julian Todt, Jose Patino, Nicholas Evans, and Thorsten Strufe. 2024. A False Sense of Privacy: Towards a Reliable Evaluation Methodology for the Anonymization of Biometric Data. Proceedings on Privacy Enhancing Technologies (PoPETs), Vol. 2024 (2024), 116--132. Issue 1. https://doi.org/10.56553/popets-2024-0008
[12]
Huggingface. [n.,d.]. Diffusers. https://huggingface.co/docs/diffusers/en/index
[13]
Håkon Hukkelås, Rudolf Mester, and Frank Lindseth. 2019. Deepprivacy: A generative adversarial network for face anonymization. In International Symposium on Visual Computing. Springer, 565--578. https://doi.org/10.1007/978--3-030--33720--9_44
[14]
Håkon Hukkelås and Frank Lindseth. 2022. DeepPrivacy2: Towards Realistic Full-Body Anonymization. In Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). https://doi.org/10.1109/WACV56688.2023.00138
[15]
Håkon Hukkelås and Frank Lindseth. 2023. Does Image Anonymization Impact Computer Vision Training?. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 140--150. https://doi.org/10.1109/CVPRW59228.2023.00019
[16]
Håkon Hukkelås and Frank Lindseth. 2024. Synthesizing Anyone, Anywhere, in Any Pose. In Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 4023--4034. https://doi.org/10.1109/WACV57701.2024.00399
[17]
Håkon Hukkelås, Morten Smebye, Rudolf Mester, and Frank Lindseth. 2023. Realistic Full-Body Anonymization with Surface-Guided GANs. In Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 1430--1440. https://doi.org/10.1109/WACV56688.2023.00148
[18]
Mohamed Khamis, Habiba Farzand, Marija Mumm, and Karola Marky. 2022. DeepFakes for Privacy: Investigating the Effectiveness of State-of-the-Art Privacy-Enhancing Face Obfuscation Methods. In Proceedings of the 2022 International Conference on Advanced Visual Interfaces (AVI). Article 21, 5 pages. https://doi.org/10.1145/3531073.3531125
[19]
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. 2023. Segment Anything. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV). 3992--4003. https://doi.org/10.1109/ICCV51070.2023.00371
[20]
Marvin Klemp, Kevin Rösch, Royden Wagner, Jannik Quehl, and Martin Lauer. 2023. LDFA: Latent Diffusion Face Anonymization for Self-driving Applications. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 3199--3205. https://doi.org/10.1109/CVPRW59228.2023.00322
[21]
Kuno Kurzhals. 2023. Privacy in Eye Tracking Research with Stable Diffusion. In Proceedings of the 2023 Symposium on Eye Tracking Research and Applications (ETRA). Article 70, 7 pages. https://doi.org/10.1145/3588015.3589842
[22]
Minh Ha Le and Niklas Carlsson. 2023. StyleID: Identity Disentanglement for Anonymizing Faces. Proceedings on Privacy Enhancing Technologies (PoPETs), Vol. 2023 (2023), 264--278. Issue 1. https://doi.org/10.56553/popets-2023-0016
[23]
Yifang Li, Nishant Vishwamitra, Bart P. Knijnenburg, Hongxin Hu, and Kelly Caine. 2017. Blur vs. Block: Investigating the Effectiveness of Privacy-Enhancing Obfuscation for Images. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1343--1351. https://doi.org/10.1109/CVPRW.2017.176
[24]
Maxim Maximov, Ismail Elezi, and Laura Leal-Taixé. 2020. CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 5446--5455. https://doi.org/10.1109/CVPR42600.2020.00549
[25]
Ricardo Mendes and Jo ao P. Vilela. 2017. Privacy-preserving data mining: methods, metrics, and applications. IEEE Access, Vol. 5 (2017), 10562--10582. https://doi.org/10.1109/Access.2017.2706947
[26]
Anton Milan, Laura Leal-Taixé, Ian D. Reid, Stefan Roth, and Konrad Schindler. 2016. MOT16: A Benchmark for Multi-Object Tracking. CoRR, Vol. abs/1603.00831 (2016). https://doi.org/10.48550/arXiv.1603.00831
[27]
Council of European Union. [n.,d.]. Regulation (EU) 2016/679 of the European Parliament and of the Council. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
[28]
Anastasiia Pika, Moe T. Wynn, Stephanus Budiono, Arthur H.M. ter Hofstede, Wil M.P. van der Aalst, and Hajo A. Reijers. 2020. Privacy-Preserving Process Mining in Healthcare. International Journal of Environmental Research and Public Health, Vol. 17, 5 (2020). https://doi.org/10.3390/ijerph17051612
[29]
Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. 2023. SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis. arXiv preprint (2023). https://doi.org/10.48550/arXiv.2307.01952
[30]
Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 779--788. https://doi.org/10.1109/CVPR.2016.91
[31]
Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. 2022. High-Resolution Image Synthesis with Latent Diffusion Models. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10674--10685. https://doi.org/10.1109/CVPR52688.2022.01042
[32]
Will Rowan, Patrik Huber, Nick Pears, and Andrew Keeling. 2023. Fake It Without Making It: Conditioned Face Generation for Accurate 3D Face Reconstruction. arXiv preprint (2023). https://doi.org/10.48550/arXiv.2307.13639
[33]
Sefik Ilkin Serengil and Alper Ozpinar. 2020. LightFace: A Hybrid Deep Face Recognition Framework. In Proceedings of the 2020 Innovations in Intelligent Systems and Applications Conference (ASYU). IEEE, 23--27. https://doi.org/10.1109/ASYU50717.2020.9259802
[34]
Zhaoyang Xia, Carol Neidle, and Dimitris N. Metaxas. 2023. DiffSLVA: Harnessing Diffusion Models for Sign Language Video Anonymization. arXiv preprint (2023). https://doi.org/10.48550/arXiv.2311.16060
[35]
Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change Loy. 2023. Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation. In Proceedings of SIGGRAPH Asia 2023. Article 95, 11 pages. https://doi.org/10.1145/3610548.3618160
[36]
Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023. Adding Conditional Control to Text-to-Image Diffusion Models. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV). 3813--3824. https://doi.org/10.1109/ICCV51070.2023.00355
[37]
Jingxing Zhou and Jürgen Beyerer. 2022. Impacts of Data Anonymization on Semantic Segmentation. In Proceedings of the 2022 IEEE Intelligent Vehicles Symposium (IV). 997--1004. https://doi.org/10.1109/IV51971.2022.9827262

Index Terms

  1. RAD: Realistic Anonymization of Images Using Stable Diffusion

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        WPES '24: Proceedings of the 23rd Workshop on Privacy in the Electronic Society
        November 2024
        219 pages
        ISBN:9798400712395
        DOI:10.1145/3689943
        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 21 November 2024

        Check for updates

        Author Tags

        1. anonymization
        2. realistic images
        3. stable diffusion

        Qualifiers

        • Research-article

        Funding Sources

        • Wallenberg AI, Autonomous Systems and Software Program (WASP)

        Conference

        CCS '24
        Sponsor:

        Acceptance Rates

        Overall Acceptance Rate 106 of 355 submissions, 30%

        Upcoming Conference

        CCS '25

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 54
          Total Downloads
        • Downloads (Last 12 months)54
        • Downloads (Last 6 weeks)54
        Reflects downloads up to 12 Dec 2024

        Other Metrics

        Citations

        View Options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media