[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3678717.3691324acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article
Open access

Transferable Unsupervised Outlier Detection Framework for Human Semantic Trajectories

Published: 22 November 2024 Publication History

Abstract

Semantic trajectories, which enrich spatial-temporal data with textual information such as trip purposes or location activities, are key for identifying outlier behaviors critical to healthcare, social security, and urban planning. Traditional outlier detection relies on heuristic rules, which requires domain knowledge and limits its ability to identify unseen outliers. Besides, there lacks a comprehensive approach that can jointly consider multi-modal data across spatial, temporal, and textual dimensions. Addressing the need for a domain-agnostic model, we propose the Transferable Outlier Detection for Human Semantic Trajectories (TOD4Traj) framework. TOD4Traj first introduces a modality feature unification module to align diverse data feature representations, enabling the integration of multi-modal information and enhancing transferability across different datasets. A contrastive learning module is further proposed for identifying regular mobility patterns both temporally and across populations, allowing for a joint detection of outliers based on individual consistency and group majority patterns. Our experimental results have shown TOD4Traj's superior performance over existing models, demonstrating its effectiveness and adaptability in detecting human trajectory outliers across various datasets.

References

[1]
Luis Otavio Alvares, Vania Bogorny, et al. 2007. Towards semantic trajectory knowledge discovery. Data Mining and Knowledge Discovery 12 (2007).
[2]
Hossein Amiri, Will Kohn, et al. 2024. The Patterns of Life Human Mobility Simulation. (2024). arXiv:2410.00185
[3]
Hossein Amiri, Ruochen Kong, and Andreas Zufle. 2024. Urban Anomalies: A Simulated Human Mobility Dataset with Injected Anomalies. (2024). arXiv:2410.01844
[4]
Hossein Amiri, Shiyang Ruan, et al. 2023. Massive Trajectory Data Based on Patterns of Life. In SIGSPATIAL'23. ACM, 1--4.
[5]
Kuldip Singh Atwal, Taylor Anderson, Dieter Pfoser, and Andreas Züfle. 2022. Predicting building types using OpenStreetMap. Scientific Reports 12, 1 (2022), 19976.
[6]
Arslan Basharat, Alexei Gritai, and Mubarak Shah. 2008. Learning object motion patterns for anomaly detection and improved object detection. In 2008 IEEE conference on computer vision and pattern recognition. IEEE, 1--8.
[7]
Asma Belhadi, Youcef Djenouri, Jerry Chun-Wei Lin, and Alberto Cano. 2020. Trajectory Outlier Detection: Algorithms, Taxonomies, Evaluation, and Open Challenges. ACM Trans. Manage. Inf. Syst. 11, 3, Article 16 (jun 2020), 29 pages. https://doi.org/10.1145/3399631
[8]
Jonathan Bennett. 2010. OpenStreetMap. Packt Publishing Ltd.
[9]
Lisi Chen, Shuo Shang, Christian S Jensen, Bin Yao, and Panos Kalnis. 2020. Parallel semantic trajectory similarity join. In 2020 IEEE 36th International Conference on Data Engineering(ICDE). IEEE, 997--1008.
[10]
Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In International conference on machine learning. PMLR, 1597--1607.
[11]
Gao Cong, Hua Lu, Beng Chin Ooi, Dongxiang Zhang, and Meihui Zhang. 2012. Efficient spatial keyword search in trajectory databases. arXiv preprint arXiv:1205.2880 (2012).
[12]
George Cybenko. 1989. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems 2, 4 (1989), 303--314.
[13]
Armin Daneshpazhouh and Ashkan Sami. 2014. Entropy-based outlier detection using semi-supervised approach with few positive examples. Pattern Recognition Letters 49 (nov 2014), 77--84. https://doi.org/10.1016/j.patrec.2014.06.012
[14]
Dario Dotti, Mirela Popa, and Stylianos Asteriadis. 2020. A hierarchical autoencoder learning model for path prediction and abnormality detection. Pattern Recognition Letters 130 (2020), 216--224.
[15]
Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. 2008. Understanding individual human mobility patterns. nature 453, 7196 (2008), 779--782.
[16]
Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei Han. 2014. Outlier Detection for Temporal Data: A Survey. IEEE Transactions on Knowledge and Data Engineering 26, 9 (sep 2014), 2250--2267. https://doi.org/10.1109/TKDE.2013.184
[17]
Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), Vol. 2. IEEE, 1735--1742.
[18]
Xiaolin Han, Reynold Cheng, Chenhao Ma, and Tobias Grubenmann. 2022. DeepTEA: effective and efficient online time-dependent trajectory outlier detection. Proceedings of the VLDB Endowment 15, 7 (2022), 1493--1505.
[19]
Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 9729--9738.
[20]
Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735--1780.
[21]
Joon-Seok Kim, Hyunjee Jin, et al. 2020. Location-based social network data generation based on patterns of life. In 2020 21st IEEE International Conference on Mobile Data Management (MDM). IEEE, 158--167.
[22]
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
[23]
Will Kohn, Hossein Amiri, and Andreas Züfle. 2023. EPIPOL: An Epidemiological Patterns of Life Simulation (Demonstration Paper). In SIGSPATIAL SpatialEpi'23 Workshop. ACM, 13--16.
[24]
Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278--2324.
[25]
Jae-Gil Lee, Jiawei Han, and Xiaolei Li. 2008. Trajectory outlier detection: A partition-and-detect framework. In 2008 IEEE 24th International Conference on Data Engineering. IEEE, 140--149.
[26]
Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Network Analysis and Graph-Mining Library. ACM Transactions on Intelligent Systems and Technology (TIST) 8, 1 (2016), 1.
[27]
Caihong Liu and Chonghui Guo. 2020. STCCD: Semantic trajectory clustering based on community detection in networks. Expert Systems with Applications 162 (2020), 113689.
[28]
Kuien Liu, Bin Yang, Shuo Shang, Yaguang Li, and Zhiming Ding. 2013. MOIR/UOTS: trip recommendation with user oriented trajectory search. In 2013 IEEE 14th International Conference on Mobile Data Management, Vol. 1. IEEE, 335--337.
[29]
Yueyang Liu, Lance Kennedy, Hossein Amiri, and Andreas Züfle. 2024. Neural Collaborative Filtering to Detect Anomalies in Human Semantic Trajectories. arXiv:2409.18427
[30]
Yiding Liu, Kaiqi Zhao, Gao Cong, and Zhifeng Bao. 2020. Online anomalous trajectory detection with deep generative sequence modeling. In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 949--960.
[31]
Fanrong Meng, Guan Yuan, Shaoqian Lv, Zhixiao Wang, and Shixiong Xia. 2019. An overview on trajectory outlier detection. Artificial Intelligence Review 52, 4 (dec 2019), 2437--2456. https://doi.org/10.1007/s10462-018-9619-1
[32]
Mohamed Mokbel, Sofiane Abbar, and Rade Stanojevic. 2020. Contact tracing: Beyond the apps. SIGSPATIAL Special 12, 2 (2020), 15--24.
[33]
Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, et al. 2022. Mobility data science (dagstuhl seminar 22021). In Dagstuhl reports, Vol. 12. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
[34]
Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, Sanjay Chawla, et al. 2023. Towards Mobility Data Science (Vision Paper). arXiv preprint arXiv:2307.05717 (2023).
[35]
Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
[36]
Christine Parent, Stefano Spaccapietra, Chiara Renso, Gennady Andrienko, Natalia Andrienko, Vania Bogorny, Maria Luisa Damiani, Aris Gkoulalas-Divanis, Jose Macedo, Nikos Pelekis, et al. 2013. Semantic trajectories modeling and analysis. ACM Computing Surveys (CSUR) 45, 4 (2013), 1--32.
[37]
Sirisha Rambhatla, Sepanta Zeighami, Kameron Shahabi, Cyrus Shahabi, and Yan Liu. 2022. Toward Accurate Spatiotemporal COVID-19 Risk Scores Using High-Resolution Real-World Mobility Data. ACM Trans. Spatial Algorithms Syst. 8, 2 (2022), 1--30. https://doi.org/10.1145/3481044
[38]
Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. 2018. Deep one-class classification. In International conference on machine learning. PMLR, 4393--4402.
[39]
Nauman Shahid, Ijaz Haider Naqvi, and Saad Bin Qaisar. 2015. Characteristics and classification of outlier detection techniques for wireless sensor networks in harsh environments: a survey. Artificial Intelligence Review 43, 2 (feb 2015), 193--228. https://doi.org/10.1007/s10462-012-9370-y
[40]
Shuo Shang, Ruogu Ding, Bo Yuan, Kexin Xie, Kai Zheng, and Panos Kalnis. 2012. User oriented trajectory search for trip recommendation. In Proceedings of the 15th international conference on extending database technology. 156--167.
[41]
Juntian Shi, Zhicheng Pan, Junhua Fang, and Pingfu Chao. 2023. RUTOD: real-time urban traffic outlier detection on streaming trajectory. Neural Computing and Applications 35, 5 (feb 2023), 3625--3637. https://doi.org/10.1007/s00521-021-06294-y
[42]
Thanos G Stavropoulos, Asterios Papastergiou, Lampros Mpaltadoros, Spiros Nikolopoulos, and Ioannis Kompatsiaris. 2020. IoT wearable sensors and devices in elderly care: A literature review. Sensors 20, 10 (2020), 2826.
[43]
Yueyang Su, Di Yao, and Jingping Bi. 2023. Transfer learning for region-wide trajectory outlier detection. IEEE Access (2023), 1--1. https://doi.org/10.1109/ACCESS.2023.3294689
[44]
Magdalena I Tolea, John C Morris, and James E Galvin. 2016. Trajectory of mobility decline by type of dementia. Alzheimer disease and associated disorders 30, 1 (2016), 60.
[45]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).
[46]
Jingwei Wang, Yun Yuan, Tianle Ni, Yunlong Ma, Min Liu, Gaowei Xu, and Weiming Shen. 2020. Anomalous Trajectory Detection and Classification Based on Difference and Intersection Set Distance. IEEE Transactions on Vehicular Technology 69, 3 (mar 2020), 2487--2500. https://doi.org/10.1109/TVT.2020.2967865
[47]
Di Yao, Chao Zhang, Jianhui Huang, and Jingping Bi. 2017. Serm: A recurrent model for next location prediction in semantic trajectories. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2411--2414.
[48]
Josh Jia-Ching Ying, Wang-Chien Lee, Tz-Chiao Weng, and Vincent S Tseng. 2011. Semantic trajectory mining for location prediction. In Proceedings of the 19th ACM SIGSPATIAL international conference on advances in geographic information systems. 34--43.
[49]
Jianting Zhang. 2012. Smarter outlier detection and deeper understanding of large-scale taxi trip records: a case study of NYC. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing. 157--162.
[50]
Zheng Zhang, Hossein Amiri, et al. 2023. Large Language Models for Spatial Trajectory Patterns Mining. (2023). arXiv:2310.04942
[51]
Zheng Zhang and Liang Zhao. 2022. Unsupervised deep subgraph anomaly detection. In 2022 IEEE International Conference on Data Mining (ICDM). IEEE, 753--762.
[52]
Bolong Zheng, Nicholas Jing Yuan, Kai Zheng, Xing Xie, Shazia Sadiq, and Xiaofang Zhou. 2015. Approximate keyword search in semantic trajectory database. In 2015 IEEE 31st International Conference on Data Engineering. IEEE, 975--986.
[53]
Kai Zheng, Bolong Zheng, Jiajie Xu, Guanfeng Liu, An Liu, and Zhixu Li. 2017. Popularity-aware spatial keyword search on activity trajectories. World Wide Web 20 (2017), 749--773.
[54]
Yu Zheng, Xing Xie, Quannan Li, and Wei-Ying Ma. 2008. Mining user similarity based on location history. In Proceedings of the 16th ACM SIGSPATIAL conference on Advance in Geographical Information Systems (proceedings of the 16th acm sigspatial conference on advance in geographical information systems ed.). https://www.microsoft.com/en-us/research/publication/mining-user-similarity-based-on-location-history/
[55]
Yu Zheng, Xing Xie, Wei-Ying Ma, et al. 2010. GeoLife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33, 2 (2010), 32--39.
[56]
Chong Zhou and Randy C Paffenroth. 2017. Anomaly detection with robust deep autoencoders. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. 665--674.
[57]
Andreas Züfle, Dieter Pfoser, Carola Wenk, Andrew Crooks, Hamdi Kavak, Taylor Anderson, Joon-Seok Kim, Nathan Holt, and Andrew Diantonio. 2024. In Silico Human Mobility Data Science: Leveraging Massive Simulated Mobility Data (Vision Paper). ACM Transactions on Spatial Algorithms and Systems 10, 2 (2024), 1--27.
[58]
Andreas Züfle, Carola Wenk, Dieter Pfoser, Andrew Crooks, Joon-Seok Kim, Hamdi Kavak, Umar Manzoor, and Hyunjee Jin. 2023. Urban life: a model of people and places. Computational and Mathematical Organization Theory 29, 1 (2023), 20--51.

Cited By

View all
  • (2024)Human Mobility Challenge: Are Transformers Effective for Human Mobility Prediction?Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Human Mobility Prediction Challenge10.1145/3681771.3700130(60-63)Online publication date: 16-Dec-2024
  • (2024)GeoLife+: Large-Scale Simulated Trajectory Datasets Calibrated to the GeoLife DatasetProceedings of the 7th ACM SIGSPATIAL International Workshop on GeoSpatial Simulation10.1145/3681770.3698573(25-28)Online publication date: 29-Oct-2024
  • (2024)Large Language Models for Spatial Trajectory Patterns MiningProceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Anomaly Detection10.1145/3681765.3698467(52-55)Online publication date: 29-Oct-2024
  • Show More Cited By

Index Terms

  1. Transferable Unsupervised Outlier Detection Framework for Human Semantic Trajectories

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SIGSPATIAL '24: Proceedings of the 32nd ACM International Conference on Advances in Geographic Information Systems
      October 2024
      743 pages
      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 22 November 2024

      Check for updates

      Author Tags

      1. Geolife
      2. Outlier Detection
      3. Patern of Life
      4. Self-Supervised Learning
      5. Semantic Trajectory
      6. Simulation

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Funding Sources

      Conference

      SIGSPATIAL '24
      Sponsor:

      Acceptance Rates

      SIGSPATIAL '24 Paper Acceptance Rate 37 of 122 submissions, 30%;
      Overall Acceptance Rate 257 of 1,238 submissions, 21%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)66
      • Downloads (Last 6 weeks)66
      Reflects downloads up to 21 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Human Mobility Challenge: Are Transformers Effective for Human Mobility Prediction?Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Human Mobility Prediction Challenge10.1145/3681771.3700130(60-63)Online publication date: 16-Dec-2024
      • (2024)GeoLife+: Large-Scale Simulated Trajectory Datasets Calibrated to the GeoLife DatasetProceedings of the 7th ACM SIGSPATIAL International Workshop on GeoSpatial Simulation10.1145/3681770.3698573(25-28)Online publication date: 29-Oct-2024
      • (2024)Large Language Models for Spatial Trajectory Patterns MiningProceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Anomaly Detection10.1145/3681765.3698467(52-55)Online publication date: 29-Oct-2024
      • (2024)Neural Collaborative Filtering to Detect Anomalies in Human Semantic TrajectoriesProceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Anomaly Detection10.1145/3681765.3698463(79-89)Online publication date: 29-Oct-2024
      • (2024)Urban Anomalies: A Simulated Human Mobility Dataset with Injected AnomaliesProceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Anomaly Detection10.1145/3681765.3698459(1-11)Online publication date: 29-Oct-2024
      • (2024)The Patterns of Life Human Mobility SimulationProceedings of the 32nd ACM International Conference on Advances in Geographic Information Systems10.1145/3678717.3691319(653-656)Online publication date: 22-Nov-2024

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media