[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3672196.3673394acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article

Multi-frame Bitrate Allocation of Dynamic 3D Gaussian Splatting Streaming Over Dynamic Networks

Published: 04 August 2024 Publication History

Abstract

Dynamic 3D Gaussian splats have emerged as an exciting new data type for modeling interactive photo-realistic 3D scenes. This work considers the problem of bitrate allocation for streaming dynamic 3D Gaussian splats under dynamic network conditions. We model four parameters that influence the rate-distortion trade-offs for different attribute categories and propose an efficient Model-driven Gradient Ascent (MGA) algorithm to search for the optimal parameters that achieve high visual quality while keeping the bitrate below a given threshold across multiple frames. In our experiments, MGA achieves up to 5.46 dB in PSNR improvement over the baseline. We further proposed an adaptive MGA that reduces close to 3x computational time with negligible visual quality loss.

References

[1]
Yihang Chen, Qianyi Wu, Jianfei Cai, Mehrtash Harandi, and Weiyao Lin. 2024. HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression. arXiv preprint arXiv:2403.14530 (2024).
[2]
Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. 2024. LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS. arXiv preprint arXiv:2311.17245 (2024).
[3]
Guangchi Fang and Bing Wang. 2024. Mini-Splatting: Representing Scenes with a Constrained Number of Gaussians. arXiv preprint arXiv:2403.14166 (2024).
[4]
Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. 2024. EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS. arXiv preprint arXiv:2312.04564 (2024).
[5]
Google. 2017. Draco 3D Data Compression. https://github.com/google/draco.
[6]
Alain Horé and Djemel Ziou. 2010. Image Quality Metrics: PSNR vs. SSIM. In 2010 20th International Conference on Pattern Recognition (ICPR). Istanbul, Turkey, 2366--2369.
[7]
Kai Katsumata, Duc Minh Vo, and Hideki Nakayama. 2023. An Efficient 3D Gaussian Representation for Monocular/Multi-view Dynamic Scenes. arXiv preprint arXiv:2311.12897 (2023).
[8]
Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023. 3D Gaussian Splatting for Real-time Radiance Field Rendering. ACM Transactions on Graphics 42, 4 (2023), 1--14.
[9]
Wenkai Liu, Tao Guan, Bin Zhu, Lili Ju, Zikai Song, Dan Li, Yuesong Wang, and Wei Yang. 2024. EfficientGS: Streamlining Gaussian Splatting for Large-Scale High-Resolution Scene Representation. arXiv preprint arXiv:2404.12777 (2024).
[10]
Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, and Sam Kwong. 2024. CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting. arXiv preprint arXiv:2404.09458 (2024).
[11]
Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. 2024. Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA, 20654--20664.
[12]
Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. 2023. Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis. arXiv preprint arXiv:2310.08528 (2023).
[13]
Haimin Luo, Teng Xu, Yuheng Jiang, Chenglin Zhou, Qiwei Qiu, Yingliang Zhang, Wei Yang, Lan Xu, and Jingyi Yu. 2022. Artemis: Articulated Neural Pets with Appearance and Motion Synthesis. ACM Transactions on Graphics 41, 4 (July 2022), 1--19.
[14]
MPEG. 2021. G-PCC codec description v12. Technical Report. ISO/IEC JTC 1/SC 29/WG 7 MPEG Output Document.
[15]
Arvind Narayanan, Eman Ramadan, Rishabh Mehta, Xinyue Hu, Qingxu Liu, Rostand A. K. Fezeu, Udhaya Kumar Dayalan, Saurabh Verma, Peiqi Ji, Tao Li, Feng Qian, and Zhi-Li Zhang. 2020. Lumos5G: Mapping and Predicting Commercial mmWave 5G Throughput. In Proceedings of the ACM Internet Measurement Conference (IMC). Virtual Event, USA, 176--193.
[16]
Netflix. 2021. VMAF - Video Multi-Method Assessment Fusion. https://github.com/Netflix/vmaf.
[17]
Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. 2024. Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA, 10349--10358.
[18]
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (Nov. 2011), 2825--2830.
[19]
Aras Pranckevicius. 2023. Making Gaussian Splats Smaller. https://aras-p.info/blog/2023/09/13/Making-Gaussian-Splats-smaller/.
[20]
Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai. 2024. Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured 3D Gaussians. arXiv preprint arXiv:2403.17898 (2024).
[21]
Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing. 2024. 3DGStream: On-the-Fly Training of 3D Gaussians for Efficient Streaming of Photo-Realistic Free-Viewpoint Videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA, 20675--20685.
[22]
Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang. 2023. 4D Gaussian Splatting for Real-time Dynamic Scene Rendering. arXiv preprint arXiv:2310.08528 (2023).
[23]
Zerong Zheng, Han Huang, Tao Yu, Hongwen Zhang, Yandong Guo, and Yebin Liu. 2022. Structured Local Radiance Fields for Human Avatar Modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA, 15893--15903.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
EMS '24: Proceedings of the 2024 SIGCOMM Workshop on Emerging Multimedia Systems
August 2024
63 pages
ISBN:9798400707117
DOI:10.1145/3672196
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 August 2024

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 3D Gaussian Splatting
  2. Adaptive streaming
  3. Bitrate allocation
  4. Computer graphics
  5. System design

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ACM SIGCOMM '24
Sponsor:
ACM SIGCOMM '24: ACM SIGCOMM 2024 Conference
August 4 - 8, 2024
NSW, Sydney, Australia

Acceptance Rates

EMS '24 Paper Acceptance Rate 9 of 15 submissions, 60%;
Overall Acceptance Rate 9 of 15 submissions, 60%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 323
    Total Downloads
  • Downloads (Last 12 months)323
  • Downloads (Last 6 weeks)72
Reflects downloads up to 13 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media