[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3661638.3661668acmotherconferencesArticle/Chapter ViewAbstractPublication PagesaisnsConference Proceedingsconference-collections
research-article

Study on the Characteristics of Liquid Crystal-based Terahertz Metadevices in Wireless Communication Circuits

Published: 01 June 2024 Publication History

Abstract

Terahertz (THz) wave has become one of the candidate technologies for 6G communication systems thanks to its advantages of large bandwidth, high speed, and low delay. The THz circuit is the key component for the realization of the THz communication system. Liquid crystals can be used to control dynamic THz waves because they are both mobile and anisotropic. Therefore, liquid crystal-based THz devices have a wide range of applications in THz communication circuits.

References

[1]
Akyildiz, Ian F.; Jornet, Josep Miquel.; Han, Chong. Teranets: Ultra-broadband communication networks in the terahertz band. IEEE Wireless Communications. 2014, 21, 130–135.
[2]
Elayan, Hadeel.; Amin, Osama.; Shihada, Basem.; Terahertz band: The last piece of rf spectrum puzzle for communication systems. IEEE Open Journal Communications Society. 2020, 1, 1–32.
[3]
Stantchev, Rayko Ivanov; Sun, Baoqing.; Hornett, Sam M.; Noninvasive near-field terahertz imaging of hidden objects using a single-pixel detector. Science Advances. 2016, 2, e1600190.
[4]
Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria.; THz imaging radar for standoff personnel screening. IEEE Transactions on Terahertz Science and Technology. 2011, 1,169–182
[5]
Ippolito, Louis J. Attenuation by Atmospheric Gases. In Radiowave Propagation in Satellite Communications; Springer Netherlands: Dordrecht, The Netherlands, 1986; pp. 25–37.
[6]
Siemion, Agnieszka.; Siemion, Andrzej.; Makowski, Michal.; Off-axis metallic diffractive lens for terahertz beams. Optics Letter. 2011, 36, 1960–1962.
[7]
Zhang, Xueqian.; Tian, Zhen.; Yue, Weisheng.; Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Advanced Materials. 2013, 25, 4567–4572.
[8]
Li, Zhewen.; Li, Jiusheng. Switchable terahertz metasurface with polarization conversion and filtering functions. Applied Optics. 2021, 60, 2450–2454.
[9]
Nagatsuma, Tadao.; Ducournau, Guillaume.; Renaud, Cyril C. Advances in terahertz communications accelerated by photonics. Nature Photonics. 2016, 10, 371–379.
[10]
Hu, Dan.; Wang, Xinke.; Feng, Shengfei.; Ultrathin terahertz planar elements. Advancced Optical Materials. 2013, 1, 186–191.
[11]
Jia, Min.; Wang, Zhuo.; Li, Heting.; Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light Science & Applications. 2019, 8, 16.
[12]
Yu, Nanfang.; Capasso, Federico. Flat optics with designer metasurfaces. Nature Materials. 2014, 13, 139–150.
[13]
Sun, Qiushuo.; Chen, Xueqian.; Liu, Xudong.; Exploiting total internal reflection geometry for terahertz devices and enhanced sample characterization. Advancced Optical Materials. 2020, 8, 1900535.
[14]
He, Jingwen.; Zhang, Yan. Metasurfaces in terahertz waveband. Journa of Physics D-Applied Physics. 2017, 50, 464004.
[15]
Tsai, Tsong-Ru.; Chen, Chao-Yan.; Pan, Ci-Ling.; Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB. Applied. Optics. 2003, 42, 2372–2376.
[16]
Yang, Chan-Shan.; Lin, Chia-Jen.; Pan, Ru-Pin.; The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range. Journal of the Optical Society of America B-Optical Physics. 2010, 27, 1866–1873.
[17]
Chodorow, Urszula.; Parka, J.; Garbat, K.; Spectral investigation of nematic liquid crystals with high optical anisotropy at THz frequency range. Phase Transitions. 2012, 85, 337–344.
[18]
Chodorow, Urszula.; Parka, J.; Chojnowska, Oiga. Liquid crystal materials in THz technologies. Photonics Letters of Poland. 2012, 4, 112–114.
[19]
Wang, Lei.; Lin, Xiaowen.; Liang, Xiao.; Large birefringence liquid crystal material in terahertz range. Optical Materials Express 2012, 2, 1314–1319.
[20]
Mavrona, E.; Chodorow, U.; Barnes, M.E.; Refractive indices and birefringence of hybrid liquid crystal—Nanoparticles composite materials in the terahertz region. AIP Advances. 2015, 5, 077143.
[21]
Chen, Chao-Yan.; Pan, Ci-Ling.; Hsieh, Cho-Fan.; Liquid-crystal-based terahertz tunable Lyot filter. Applied Physics Letters. 2006, 88, 101107.
[22]
Ho, I-Chen.; Pan, Ci-lingL.; Hsieh, Cho-Fan.; Liquid-crystal-based terahertz tunable Solc filter. Optics Letters. 2008, 33, 1401–1403.
[23]
Wilk, Rafal.; Vieweg, Nico.; Kopschinski, Olaf.; Liquid crystal based electrically switchable Bragg structure for THz waves. Optics Express. 2009, 17, 7377–7382.
[24]
Vieweg, N.; Born, N.; Al-Naib, I.; Electrically tunable terahertz Notch filters. Journal of Infrared, Millimeter, and Terahertz Waves. 2012, 33, 327–332.
[25]
Zhang, Hui.; Guo, Peng.; Chen, Ping.; Liquid-crystal-filled photonic crystal for terahertz switch and filter. Journal of the Optical Society of America B. 2009, 26, 101–106.
[26]
Wu, Hsin-Ying.; Hsieh, Cho-Fan.; Tang, Tsung-Ta.; Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter. IEEE Photonics Technology Letters. 2006, 18, 1488–1490.
[27]
Yang, Jun.; Xia, Tianyu.; Jing, Shuaicheng.; Electrically tunable reflective terahertz phase shifter based on liquid crystal. Journal of Infrared, Millimeter, and Terahertz Waves. 2018, 39, 439–446.
[28]
Altmann, Kristian.; Reuter, Marco.; Garbat, Katarzyna.; Polymer stabilized liquid crystal phase shifter for terahertz waves. Optics Express 2013, 21, 12395–12400.
[29]
Ito, Ryota.; Honma, Michinomi.; Nose, Toshiaki. Electrically tunable hydrogen-bonded liquid crystal phase control device. Applied Sciences. 2018, 8, 2478.
[30]
Wang, Lei.; Lin, Xiaowen.; Hu, Wei.; Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Science & Applications. 2015, 4, e253.
[31]
Wang, Lei.; Ge, Shijun.; Hu, wei.; Tunable reflective liquid crystal terahertz waveplates. Optical Materials Express. 2017, 7, 2023–2029.
[32]
Scherger, Benedikt.; Reuter, Marco.; Scheller, Maik.; Discrete terahertz beam steering with an electrically controlled liquid crystal device. Journal of Infrared, Millimeter, and Terahertz Waves. 2012, 33, 1117–1122.
[33]
Lin, Chia-Jen.; Li, Yu-Tai.; Hsieh, Cho-Fan.; Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating. Optics Express 2008, 16, 2995–3001.
[34]
Sasaki, Tomoyuki.; Okuyama, Hiroki.; Sakamoto, Moritsugu.; Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves. Journal of Applied Physics. 2017, 121, 143106.
[35]
Nakanishi, Atsushi.; Hayashi, Shohei.; Satozono, Hiroshi.; Polarization imaging of liquid crystal polymer using terahertz difference- frequency generation source. Applied Sciences. 2021, 11, 10260.
[36]
Wu, Hao.; Hu, Wei.; Hu, Huachao.; Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Optics Express. 2012, 20, 16684–16689.
[37]
Ge, Shijun.; Chen, Peng.; Shen, Zhixiong.; Terahertz vortex beam generator based on a photopatterned large NJU-LDn-4 liquid crystal. Optics Express. 2017, 25, 12349–12356.
[38]
Shen, Zhixiong; Zhou, Shenghang; Ge, Shijun.; Liquid crystal tunable terahertz lens with spin-selected focusing property. Optics Express 2019, 27, 8800–8807.
[39]
Shen, Zhixiong.; Tang, Mingjie.; Chen, Peng.; Planar terahertz photonics mediated by liquid crystal polymers. Advanced Optical Materials. 2020, 8, 1902124.
[40]
Chen, Xuequan.; Li, Kaidi.; Zhang, Rui.; Highly efficient ultra-broadband terahertz modulation using bidirectional switching of liquid crystals. Advanced Optical Materials. 2019, 7, 1901321.
[41]
Chu, Cheng-Hung.; Tseng, Ming-Lun.; Chen, Jie.; Active dielectric metasurface based on phase-change medium. Laser & Photonics Reviews. 2016, 10, 986–994.
[42]
Cheng, Xiaomeng.; Huang, Rui.; Xu, Jimmy.; Broadband terahertz near-perfect absorbers. ACS Appled Materials & Interfaces 2020, 12, 33352–33360.
[43]
Kim, Yong-Sung.; Lin, Shawn-Yong.; Wu, Hsin-Ying.; A tunable terahertz filter and its switching properties in terahertz region based on a defect mode of a metallic photonic crystal. Journal of Applied Physics. 2011, 109, 123111.
[44]
Shrekenhamer, David.; Chen, Wenchen.; Padilla, Willie J. Liquid crystal tunable metamaterial absorber. Physical Review Letters. 2013, 110, 177403.
[45]
Wang, Ruoxing.; Li, Li.; Liu, Jianlong.; Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal. Optics Express 2017, 25, 32280–32289.
[46]
Wang, Lei.; Ge, Shijun.; Hu, Wei.; Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber. Optics Express. 2017, 25, 23873–23879.
[47]
Yang, Jun.; Wang, Peng.; Shi, Tian.; Electrically tunable liquid crystal terahertz device based on double-layer plasmonic metamaterial. Optics Express. 2019, 27, 27039–27045.
[48]
Shen, Zhixiong.; Zhou, Shenghang.; Ge, Shijun.; Liquid-crystal-integrated metadevice: Towards active multifunctional terahertz wave manipulations. Optics Letters. 2018, 43, 4695–4698.
[49]
Shen, Zhixiong.; Zhou, Shenghang.; Ge, Shijun.; Liquid crystal enabled dynamic cloaking of terahertz Fano resonators. Applied Physics Letters. 2019, 114, 041106.
[50]
Shih, Yi-Hong.; Silalahi, Harry-Miyosi.; Tsai, Ting-I.; Optically tunable and thermally erasable terahertz intensity modulators using dye-doped liquid crystal cells with metasurfaces. Crystals. 2021, 11, 1580.
[51]
Yu, Hongguan.; Wang, Huacai.; Shen, Zhixiong.; Photo-reconfigurable and electrically switchable spatial terahertz wave modulator. Chinese Optics Letters. 2023, 21, 010002.
[52]
Chen, Chia-Chun.; Chiang, Wei-Fan.; Tsai, Min-Cheng.; Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells. Optics Letters. 2015, 40, 2021–2024.
[53]
Yin, Zhiping.; Wan, Chaofan.; Deng, Guangsheng.; Fast-Tunable terahertz metamaterial absorber based on polymer network liquid crystal. Applied Sciences. 2018, 8, 2454.
[54]
Buchnev, O.; Wallauer, J.; Walther, M.; Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial. Applied Physics Letters. 2013, 103, 141904.
[55]
Cui, Tiejun.; Qi, Meiqing.; Wan, Xiang.; Coding metamaterials, digital metamaterials and programmable metamaterials. Light Science & Applications. 2014, 3, e218.
[56]
Wu, Jingbo.; Shen, Ze.; Ge, Shijun.; Liquid crystal programmable metasurface for terahertz beam steering. Applied Physics Letters. 2020, 116, 131104.
[57]
Buchnev, O.; Podoliak, N.; Kaltenecker, K.; Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for thz applications. ACS Photonics. 2020, 7, 3199–3206.
[58]
Liu, Chenxi.; Yang, Fei.; Fu, Xiaojian.; Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals. Advanced Optical Materials. 2021, 9, 2100932.

Index Terms

  1. Study on the Characteristics of Liquid Crystal-based Terahertz Metadevices in Wireless Communication Circuits

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    AISNS '23: Proceedings of the 2023 International Conference on Artificial Intelligence, Systems and Network Security
    December 2023
    467 pages
    ISBN:9798400716966
    DOI:10.1145/3661638
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 June 2024

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    AISNS 2023

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 24
      Total Downloads
    • Downloads (Last 12 months)24
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media