[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3652037.3663945acmotherconferencesArticle/Chapter ViewAbstractPublication PagespetraConference Proceedingsconference-collections
research-article

Assessing motor skills in Parkinson's Disease using smartphone-based video analysis and machine learning

Published: 26 June 2024 Publication History

Abstract

Parkinson’s disease (PD), the second most prevalent neurodegenerative condition, lacks a cure, but its symptoms can be managed. Its complex diagnosis and assessment need ongoing monitoring, highlighting the potential use of digital assessment tools for enhancing patient management, even outside the clinical settings. In this vein, this paper proposes a smartphone-based video analysis approach for assessing motor skills, particularly balance and posture, in individuals diagnosed with PD. In particular, the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) ratings for items “3.8” (leg agility), “3.9” (arising from chair),“3.13” (posture) and “3.10” (gait) are estimated by capturing and analysing video from PD patients, while performing a Comprehensive Motor Function Test. Specifically, a 3D pose landmark detection (skeleton extraction) model based on the the MediaPipe Machine Learning Platform is used and different motion features are estimated from the captured videos that may correlate with the MDS-UPDRS assessments provided by clinicians. A machine learning pipeline (evaluating five different ML classifiers) is then proposed to examine the feasibility of using these features for monitoring the balance and posture of PD patients. Experimental results, obtained using a cohort of 17 Greek PD patients, voluntarily participating in this study, demonstrate that certain features have significant correlation with the clinical MDS-UPDRS ratings. These promising results showcase the potentiality of digital assessment to provide objective representation of the PD patient’s motor skills, supporting both PD clinical assessment and self-management. Ongoing work within the AI-PROGNOSIS project will further validate these findings within a larger cohort and from additional countries.

References

[1]
[1] Greenland, J. C., & Barker, R. A. (2018). The Differential Diagnosis of Parkinson’s Disease. Neurology, 43(2), S1-11. https://doi.org/10.15586/CODONPUBLICATIONS.PARKINSONSDISEASE.2018.CH6
[2]
[2] World Health Organization. (2020, September 09). Parkinson’s disease [Fact sheet]. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/parkinson-disease
[3]
[3] Grosset D, Taurah L, Burn DJ, MacMahon D, Forbes A, Turner K, Bowron A, Walker R, Findley L, Foster O, Patel K, Clough C, Castleton B, Smith S, Carey G, Murphy T, Hill J, Brechany U, McGee P, Reading S, Brand G, Kelly L, Breen K, Ford S, Baker M, Williams A, Hearne J, Qizilbash N, Chaudhuri KR. A multicentre longitudinal observational study of changes in self reported health status in people with Parkinson’s disease left untreated at diagnosis. J Neurol Neurosurg Psychiatry. 2007 May;78(5):465-9. Epub 2006 Nov 10. 17098846; PMCID: PMC2117846.
[4]
[4] Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez‐Martin, P.,... & LaPelle, N. (2008). Movement Disorder Society‐sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS‐UPDRS): scale presentation and clinimetric testing results. Movement disorders: official journal of the Movement Disorder Society, 23(15), 2129-2170.
[5]
[5] Goetz, C. C. (2003). The Unified Parkinson’s Disease Rating Scale (UPDRS): Status and recommendations. Movement Disorders, 18(7), 738–750.https://doi.org/10.1002/MDS.10473
[6]
[6] Goetz, C. G., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stebbins, G. T., Stern, M. B., Tilley, B. C., Dodel, R., Dubois, B., Holloway, R., Jankovic, J., Kulisevsky, J., Lang, A. E., Lees, A., Leurgans, S., LeWitt, P. A., Nyenhuis, D., Olanow, C. W., … LaPelle, N. (2007). Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): Process, format, and clinimetric testing plan. Movement Disorders, 22(1), 41–47. https://doi.org/10.1002/MDS.21198
[7]
[7] Martinez-Martin, P., Rodriguez-Blazquez, C., Alvarez-Sanchez, M., Arakaki, T., Bergareche-Yarza, A., Chade, A., Garretto, N., Gershanik, O., Kurtis, M. M., Martinez-Castrillo, J. C., Mendoza-Rodriguez, A., Moore, H. P., Rodriguez-Violante, M., Singer, C., Tilley, B. C., Huang, J., Stebbins, G. T., & Goetz, C. G. (2013). Expanded and independent validation of the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). Journal of Neurology, 260(1), 228–236. https://doi.org/10.1007/S00415-012-6624-1
[8]
[8] Heldman, D. A., Giuffrida, J. P., Chen, R., Payne, M., Mazzella, F., Duker, A. P., Sahay, A., Kim, S. J., Revilla, F. J., & Espay, A. J. (2011). The Modified Bradykinesia Rating Scale for Parkinson’s Disease: Reliability and Comparison with Kinematic Measures. Movement Disorders, 26(10), 1859. https://doi.org/10.1002/MDS.23740
[9]
[9] Louis, E. D., Levy, G., Côte, L. J., Mejia, H., Fahn, S., & Marder, K. (2001). Clinical correlates of action tremor in Parkinson disease. Archives of Neurology, 58(10), 1630–1634. https://doi.org/10.1001/ARCHNEUR.58.10.1630
[10]
[10] Del, M., Ferreira-Sánchez, R., Moreno-Verdú, M., Cano-De-La-Cuerda, R., Rey, U., & Carlos, J. (2020). Quantitative Measurement of Rigidity in Parkinson’s Disease: A Systematic Review. Sensors 2020, Vol. 20, Page 880, 20(3), 880. https://doi.org/10.3390/S20030880
[11]
[11] Grill, S., Weuve, J., & Weisskopf, M. G. (2011). Predicting Outcomes in Parkinson’s Disease: Comparison of Simple Motor Performance Measures and the Unified Parkinson’s Disease Rating Scale-III. Journal of Parkinson’s Disease, 1(3), 287–298. https://doi.org/10.3233/JPD-2011-11016
[12]
[12] Stamatakis, J., Ambroise, J., Crémers, J., Sharei, H., Delvaux, V., Macq, B., & Garraux, G. (2013). Finger tapping clinimetric score prediction in Parkinson’s disease using low-cost accelerometers. Computational Intelligence and Neuroscience, 2013. https://doi.org/10.1155/2013/717853
[13]
[13] AlMahadin, G., Lotfi, A., Zysk, E., Siena, F. L., Carthy, M. M., & Breedon, P. (2020). Parkinson’s disease: current assessment methods and wearable devices for evaluation of movement disorder motor symptoms - a patient and healthcare professional perspective. BMC Neurology, 20(1), 1–13. https://doi.org/10.1186/S12883-020-01996-7/TABLES/1
[14]
[14] Colosimo, C., Martínez-Martín, P., Fabbrini, G., Hauser, R. A., Merello, M., Miyasaki, J., Poewe, W., Sampaio, C., Rascol, O., Stebbins, G. T., Schrag, A., & Goetz, C. G. (2010). Task force report on scales to assess dyskinesia in Parkinson’s disease: Critique and recommendations. Movement Disorders, 25(9), 1131–1142. https://doi.org/10.1002/MDS.23072
[15]
[15] Adams, J. L., Lizarraga, K. J., Waddell, E. M., Myers, T. L., Jensen-Roberts, S., Modica, J. S., & Schneider, R. B. (2021). Digital Technology in Movement Disorders: Updates, Applications, and Challenges. Current Neurology and Neuroscience Reports, 21(4), 1–11. https://doi.org/10.1007/S11910-021-01101-6/TABLES/2
[16]
[16] Espay, A. J., Hausdorff, J. M., Sánchez-Ferro, Á., Klucken, J., Merola, A., Bonato, P., Paul, S. S., Horak, F. B., Vizcarra, J. A., Mestre, T. A., Reilmann, R., Nieuwboer, A., Dorsey, E. R., Rochester, L., Bloem, B. R., & Maetzler, W. (2019). A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease obtained using mobile health technologies. Movement Disorders, 34(5), 657–663. https://doi.org/10.1002/MDS.27671
[17]
[17] Casamassima, F., Ferrari, A., Milosevic, B., Ginis, P., Farella, E., & Rocchi, L. (2014). A Wearable System for Gait Training in Subjects with Parkinson’s Disease. Sensors 2014, Vol. 14, Pages 6229-6246, 14(4), 6229–6246. https://doi.org/10.3390/S140406229
[18]
[18] Matias, R., Paixão, V., Bouça, R., & Ferreira, J. J. (2017). A perspective on wearable sensor measurements and data science for Parkinson’s disease. Frontiers in Neurology, 8(DEC), 291770. https://doi.org/10.3389/FNEUR.2017.00677/BIBTEX
[19]
[19] Haleem, A., Javaid, M., Singh, R. P., & Suman, R. (2021). Telemedicine for healthcare: Capabilities, features, barriers, and applications. Sensors International, 2, 100117. https://doi.org/10.1016/J.SINTL.2021.100117
[20]
[20] Dias, S. B., Grammatikopoulou, A., Diniz, J. A., Dimitropoulos, K., Grammalidis, N., Zilidou, V., Savvidis, T., Konstantinidis, E., Bamidis, P. D., Jaeger, H., Stadtschnitzer, M., Silva, H., Telo, G., Ioakeimidis, I., Ntakakis, G., Karayiannis, F., Huchet, E., Hoermann, V., Filis, K., … Hadjileontiadis, L. J. (2020). Innovative Parkinson’s Disease Patients’ Motor Skills Assessment: The i-PROGNOSIS Paradigm. Frontiers in Computer Science, 2. https://doi.org/10.3389/fcomp.2020.00020
[21]
[21] Dias, S. B., Grammatikopoulou, A., Grammalidis, N., Diniz, J. A., Savvidis, T., Konstantinidis, E.,... Dimitropoulos, K, & Hadjileontiadis, L. J. (2020). Motion analysis on depth camera data to quantify Parkinson’s disease patients’ motor status within the framework of I-Prognosis personalized game suite. In 2020 IEEE International Conference on Image Processing (ICIP), 3264-3268. https://doi.org/10.1109/ICIP40778.2020.9191017
[22]
[22] Dias, S. B., Grammatikopoulou, A., Diniz, J. A., Dimitropoulos, K., Grammalidis, N., Zilidou, V.,... & Hadjileontiadis, L. J. (2020). Innovative Parkinson’s disease patients’ motor skills assessment: the i-PROGNOSIS paradigm. Frontiers in Computer Science, 2, 20. https://doi.org/10.3389/fcomp.2020.00020
[23]
[23] Erfianto, B., Rizal, A., & Hadiyoso, S. (2023). Empirical Mode Decomposition and Hilbert Spectrum for Abnormality Detection in Normal and Abnormal Walking Transitions. International Journal of Environmental Research and Public Health, 20(5), 3879. https://doi.org/10.3390/ijerph20053879
[24]
[24] Dranca, L., de Abetxuko Ruiz de Mendarozketa, L., Goñi, A., Illarramendi, A., Navalpotro Gomez, I., Delgado Alvarado, M., & Rodríguez-Oroz, M. C. (2018). Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment. BMC Bioinformatics, 19(1), 471. https://doi.org/10.1186/s12859-018-2488-4
[25]
[25] Abe, K., Tabei, K.-I., Matsuura, K., Kobayashi, K., & Ohkubo, T. (2022). Relationship Between the Results of Arm Swing Data From the OpenPose-Based Gait Analysis System and MDS-UPDRS Scores. IEEE Access, 10, 118992–119000. https://doi.org/10.1109/ACCESS.2022.3220767
[26]
[26] Guo, R., Shao, X., Zhang, C., & Qian, X. (2021). Multi-scale sparse graph convolutional network for the assessment of Parkinsonian gait. IEEE Transactions on Multimedia, 24, 1583-1594.
[27]
[27] Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376. https://doi.org/10.1136/JNNP.2007.131045
[28]
[28] MediaPipe. 2024. Pose landmark detection guide (January 2024). Retrieved March 3, 2024 from https://developers.google.com/mediapipe/solutions/vision/pose_landmarker
[29]
[29] Ghojogh B. and Crowley M. (2019), "Unsupervised and Supervised Principal Component Analysis: Tutorial", arXiv preprint arXiv:1906.03148.
[30]
[30] Di Biase, L., Di Santo, A., Caminiti, M. L., De Liso, A., Shah, S. A., Ricci, L., & Di Lazzaro, V. (2020). Gait analysis in Parkinson’s disease: An overview of the most accurate markers for diagnosis and symptoms monitoring. Sensors, 20(12), 3529.

Index Terms

  1. Assessing motor skills in Parkinson's Disease using smartphone-based video analysis and machine learning

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      PETRA '24: Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments
      June 2024
      708 pages
      ISBN:9798400717604
      DOI:10.1145/3652037
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 26 June 2024

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. AI-PROGNOSIS
      2. Machine learning
      3. MediaPipe
      4. Motor skills assessment
      5. Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
      6. Parkinson’s disease

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Funding Sources

      • European Union

      Conference

      PETRA '24

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 49
        Total Downloads
      • Downloads (Last 12 months)49
      • Downloads (Last 6 weeks)3
      Reflects downloads up to 14 Dec 2024

      Other Metrics

      Citations

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media