[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3640457.3687114acmconferencesArticle/Chapter ViewAbstractPublication PagesrecsysConference Proceedingsconference-collections
extended-abstract

Sixth Knowledge-aware and Conversational Recommender Systems Workshop (KaRS)

Published: 08 October 2024 Publication History

Abstract

Recommender systems, though widely used, often struggle to engage users effectively. While deep learning methods have enhanced connections between users and items, they often neglect the user’s perspective. Knowledge-based approaches, utilizing knowledge graphs, offer semantic insights and address issues like knowledge graph embeddings, hybrid recommendation, and interpretable recommendation. More recently, neural-symbolic systems, combining data-driven and symbolic techniques, show promise in recommendation systems, especially when used with knowledge graphs. Moreover, content features become vital in conversational recommender systems, which demand multi-turn dialogues. Recent literature highlights increasing interest in this area, particularly with the emergence of Large Language Models (LLMs), which excel in understanding user queries and generating recommendations in natural language. Sixth Knowledge-aware and Conversational Recommender Systems (KaRS) Workshop aims to disseminate advancements and discuss about challenges and opportunities.

References

[1]
Vito Walter Anelli, Pierpaolo Basile, Derek G. Bridge, Tommaso Di Noia, Pasquale Lops, Cataldo Musto, Fedelucio Narducci, and Markus Zanker. 2018. Knowledge-aware and conversational recommender systems. In Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018, Sole Pera, Michael D. Ekstrand, Xavier Amatriain, and John O’Donovan (Eds.). ACM, 521–522.
[2]
Vito Walter Anelli, Pierpaolo Basile, Gerard de Melo, Francesco Maria Donini, Antonio Ferrara, Cataldo Musto, Fedelucio Narducci, Azzurra Ragone, and Markus Zanker. 2022. Fourth Knowledge-aware and Conversational Recommender Systems Workshop (KaRS). In RecSys ’22: Sixteenth ACM Conference on Recommender Systems, Seattle, WA, USA, September 18 - 23, 2022, Jennifer Golbeck, F. Maxwell Harper, Vanessa Murdock, Michael D. Ekstrand, Bracha Shapira, Justin Basilico, Keld T. Lundgaard, and Even Oldridge (Eds.). ACM, 663–666. https://doi.org/10.1145/3523227.3547412
[3]
Vito Walter Anelli, Pierpaolo Basile, Gerard de Melo, Francesco M. Donini, Antonio Ferrara, Cataldo Musto, Fedelucio Narducci, Azzurra Ragone, and Markus Zanker. 2023. Fifth Knowledge-aware and Conversational Recommender Systems Workshop (KaRS). In Proceedings of the 17th ACM Conference on Recommender Systems, RecSys 2023, Singapore, Singapore, September 18-22, 2023, Jie Zhang, Li Chen, Shlomo Berkovsky, Min Zhang, Tommaso Di Noia, Justin Basilico, Luiz Pizzato, and Yang Song (Eds.). ACM, 1259–1262. https://doi.org/10.1145/3604915.3608759
[4]
Vito Walter Anelli, Pierpaolo Basile, Tommaso Di Noia, Francesco M. Donini, Cataldo Musto, Fedelucio Narducci, and Markus Zanker. 2021. Third Knowledge-aware and Conversational Recommender Systems Workshop (KaRS). In RecSys ’21: Fifteenth ACM Conference on Recommender Systems, Amsterdam, The Netherlands, 27 September 2021 - 1 October 2021, Humberto Jesús Corona Pampín, Martha A. Larson, Martijn C. Willemsen, Joseph A. Konstan, Julian J. McAuley, Jean Garcia-Gathright, Bouke Huurnink, and Even Oldridge (Eds.). ACM, 806–809.
[5]
Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo, Francesco Maria Donini, and Tommaso Di Noia. 2021. Elliot: A Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation. In SIGIR. ACM, 2405–2414.
[6]
Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, and Felice Antonio Merra. 2021. A Study of Defensive Methods to Protect Visual Recommendation Against Adversarial Manipulation of Images. In SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, July 11-15, 2021, Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai (Eds.). ACM, 1094–1103. https://doi.org/10.1145/3404835.3462848
[7]
Vito Walter Anelli, Renato De Leone, Tommaso Di Noia, Thomas Lukasiewicz, and Jessica Rosati. 2020. Combining RDF and SPARQL with CP-theories to reason about preferences in a Linked Data setting. Semantic Web 11, 3 (2020), 391–419.
[8]
Vito Walter Anelli and Tommaso Di Noia. 2019. 2nd Workshop on Knowledge-aware and Conversational Recommender Systems - KaRS. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019, Beijing, China, November 3-7, 2019, Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu (Eds.). ACM, 3001–3002.
[9]
Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Antonio Ferrara, and Alberto Carlo Maria Mancino. 2021. Sparse Feature Factorization for Recommender Systems with Knowledge Graphs. In RecSys. ACM, 154–165.
[10]
Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Azzurra Ragone, and Joseph Trotta. 2019. How to Make Latent Factors Interpretable by Feeding Factorization Machines with Knowledge Graphs. In The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part I(Lecture Notes in Computer Science, Vol. 11778), Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtech Svátek, Isabel F. Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon (Eds.). Springer, 38–56.
[11]
Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Azzurra Ragone, and Joseph Trotta. 2022. Semantic Interpretation of Top-N Recommendations. IEEE Trans. Knowl. Data Eng. 34, 5 (2022), 2416–2428.
[12]
Samy Badreddine, Artur S. d’Avila Garcez, Luciano Serafini, and Michael Spranger. 2022. Logic Tensor Networks. Artif. Intell. 303 (2022), 103649.
[13]
Robert Burke. 2000. Knowledge-based recommender systems. Encyclopedia of Library and Information Systems: Vol. 6.(Supplement 32).
[14]
Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. 2019. Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences. In The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia (Eds.). ACM, 151–161.
[15]
Tommaso Carraro, Alessandro Daniele, Fabio Aiolli, and Luciano Serafini. 2022. Logic Tensor Networks for Top-N Recommendation. In NeSy(CEUR Workshop Proceedings, Vol. 3212). CEUR-WS.org, 1–14.
[16]
Giandomenico Cornacchia, Vito Walter Anelli, Giovanni Maria Biancofiore, Fedelucio Narducci, Claudio Pomo, Azzurra Ragone, and Eugenio Di Sciascio. 2023. Auditing fairness under unawareness through counterfactual reasoning. Inf. Process. Manag. 60, 2 (2023), 103224. https://doi.org/10.1016/J.IPM.2022.103224
[17]
Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018. Convolutional 2D Knowledge Graph Embeddings. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 1811–1818.
[18]
Tommaso Di Noia, Corrado Magarelli, Andrea Maurino, Matteo Palmonari, and Anisa Rula. 2018. Using Ontology-Based Data Summarization to Develop Semantics-Aware Recommender Systems. In The Semantic Web - 15th Int. Conf., ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proc.Springer New York, 128–144.
[19]
Tommaso Di Noia and Vito Claudio Ostuni. 2015. Recommender systems and linked open data. In Reasoning Web Int. Summer School. Springer, 88–113.
[20]
Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus Zanker. 2015. Constraint-Based Recommender Systems. In Recommender Systems Handbook. 161–190.
[21]
Ignacio Fernández-Tobías, Iván Cantador, Paolo Tomeo, Vito Walter Anelli, and Tommaso Di Noia. 2019. Addressing the user cold start with cross-domain collaborative filtering: exploiting item metadata in matrix factorization. User Model. User-Adapt. Interact. 29, 2 (2019), 443–486.
[22]
Gaole He, Junyi Li, Wayne Xin Zhao, Peiju Liu, and Ji-Rong Wen. 2020. Mining Implicit Entity Preference from User-Item Interaction Data for Knowledge Graph Completion via Adversarial Learning. In WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM / IW3C2, 740–751.
[23]
Dietmar Jannach, Ahtsham Manzoor, Wanling Cai, and Li Chen. 2020. A survey on conversational recommender systems. arXiv preprint arXiv:2004.00646 (2020).
[24]
Dietmar Jannach, Paul Resnick, Alexander Tuzhilin, and Markus Zanker. 2016. Recommender systems—beyond matrix completion. Commun. ACM 59, 11 (2016), 94–102.
[25]
Mojtaba Nayyeri, Sahar Vahdati, Xiaotian Zhou, Hamed Shariat Yazdi, and Jens Lehmann. 2020. Embedding-Based Recommendations on Scholarly Knowledge Graphs. In The Semantic Web - 17th International Conference, ESWC 2020, Heraklion, Crete, Greece, May 31-June 4, 2020, Proceedings(Lecture Notes in Computer Science, Vol. 12123), Andreas Harth, Sabrina Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko Paulheim, Anisa Rula, Anna Lisa Gentile, Peter Haase, and Michael Cochez (Eds.). Springer, 255–270.
[26]
Chien-Chun Ni, Kin Sum Liu, and Nicolas Torzec. 2020. Layered Graph Embedding for Entity Recommendation using Wikipedia in the Yahoo! Knowledge Graph. In Companion of The 2020 Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Amal El Fallah Seghrouchni, Gita Sukthankar, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM / IW3C2, 811–818.
[27]
Enrico Palumbo, Diego Monti, Giuseppe Rizzo, Raphaël Troncy, and Elena Baralis. 2020. entity2rec: Property-specific knowledge graph embeddings for item recommendation. Expert Syst. Appl. 151 (2020), 113235.
[28]
Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou. 2019. End-to-End Structure-Aware Convolutional Networks for Knowledge Base Completion. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 3060–3067.
[29]
Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo. 2019. Exploring High-Order User Preference on the Knowledge Graph for Recommender Systems. ACM Trans. Inf. Syst. 37, 3 (2019), 32:1–32:26.
[30]
Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT: Knowledge Graph Attention Network for Recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM, 950–958.
[31]
Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng Chua. 2019. Explainable reasoning over knowledge graphs for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 5329–5336.
[32]
Markus Zanker, Markus Jessenitschnig, and Wolfgang Schmid. 2010. Preference reasoning with soft constraints in constraint-based recommender systems. Constraints 15, 4 (2010), 574–595.
[33]
Markus Zanker, Laurens Rook, and Dietmar Jannach. 2019. Measuring the impact of online personalisation: Past, present and future. International Journal of Human-Computer Studies 131 (2019), 160–168.
[34]
Shuo Zhang and Krisztian Balog. 2020. Evaluating conversational recommender systems via user simulation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1512–1520.
[35]
Yuan Zhang, Xiaoran Xu, Hanning Zhou, and Yan Zhang. 2020. Distilling Structured Knowledge into Embeddings for Explainable and Accurate Recommendation. In WSDM ’20: The Thirteenth ACM International Conference on Web Search and Data Mining, Houston, TX, USA, February 3-7, 2020, James Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang (Eds.). ACM, 735–743.
[36]
Kun Zhou, Wayne Xin Zhao, Shuqing Bian, Yuanhang Zhou, Ji-Rong Wen, and Jingsong Yu. 2020. Improving conversational recommender systems via knowledge graph based semantic fusion. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1006–1014.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
RecSys '24: Proceedings of the 18th ACM Conference on Recommender Systems
October 2024
1438 pages
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 October 2024

Check for updates

Author Tags

  1. conversational agents
  2. knowledge graphs
  3. large language models
  4. natural language processing
  5. neuro-symbolic
  6. recommender systems

Qualifiers

  • Extended-abstract
  • Research
  • Refereed limited

Conference

Acceptance Rates

Overall Acceptance Rate 254 of 1,295 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 55
    Total Downloads
  • Downloads (Last 12 months)55
  • Downloads (Last 6 weeks)15
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media