[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Unbiased inverse volume rendering with differential trackers

Published: 22 July 2022 Publication History

Abstract

Volumetric representations are popular in inverse rendering because they have a simple parameterization, are smoothly varying, and transparently handle topology changes. However, incorporating the full volumetric transport of light is costly and challenging, often leading practitioners to implement simplified models, such as purely emissive and absorbing volumes with "baked" lighting. One such challenge is the efficient estimation of the gradients of the volume's appearance with respect to its scattering and absorption parameters. We show that the straightforward approach---differentiating a volumetric free-flight sampler---can lead to biased and high-variance gradients, hindering optimization. Instead, we propose using a new sampling strategy: differential ratio tracking, which is unbiased, yields low-variance gradients, and runs in linear time. Differential ratio tracking combines ratio tracking and reservoir sampling to estimate gradients by sampling distances proportional to the unweighted transmittance rather than the usual extinction-weighted transmittance. In addition, we observe local minima when optimizing scattering parameters to reproduce dense volumes or surfaces. We show that these local minima can be overcome by bootstrapping the optimization from nonphysical emissive volumes that are easily optimized.

Supplemental Material

MOV File
presentation
SRT File
presentation
ZIP File
supplemental material

References

[1]
Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, and Matthias Nießner. 2019. Inverse Path Tracing for Joint Material and Lighting Estimation. In Proceedings of Computer Vision and Pattern Recognition (CVPR), IEEE.
[2]
Sai Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area Sampling for Differentiable Rendering. ACM Trans. Graph. 39, 6 (2020), 245:1--245:18.
[3]
Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan. 2021a. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. arXiv (2021). https://jonbarron.info/mipnerf/
[4]
Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. 2021b. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. arXiv:2111.12077 (Nov. 2021).
[5]
Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. 2020. Neural Reflectance Fields for Appearance Acquisition.
[6]
Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020).
[7]
Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, and Hendrik P.A. Lensch. 2021. NeRD: Neural Reflectance Decomposition from Image Collections. In IEEE International Conference on Computer Vision (ICCV).
[8]
J. C. Butcher and H. Messel. 1958. Electron Number Distribution in Electron-Photon Showers. Phys. Rev. 112 (Dec 1958), 2096--2106. Issue 6.
[9]
Min-Te Chao. 1982. A general purpose unequal probability sampling plan. Biometrika 69, 3 (12 1982), 653--656. arXiv:https://academic.oup.com/biomet/article-pdf/69/3/653/591311/69-3-653.pdf
[10]
Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2020. Towards Learning-based Inverse Subsurface Scattering. 1--12.
[11]
Frank Dellaert and Lin Yen-Chen. 2021. Neural Volume Rendering: NeRF And Beyond.
[12]
Mathieu Galtier, Stéphane Blanco, Cyril Caliot, Christophe Coustet, Jérémi Dauchet, Mouna El Hafi, Vincent Eymet, Richard Fournier, Jacques Gautrais, Anaïs Khuong, et al. 2013. Integral formulation of null-collision Monte Carlo algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer 125 (2013).
[13]
Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. 2021. FastNeRF: High-Fidelity Neural Rendering at 200FPS. arXiv:2103.10380 (March 2021).
[14]
Iliyan Georgiev, Zackary Misso, Toshiya Hachisuka, Derek Nowrouzezahrai, Jaroslav Křivánek, and Wojciech Jarosz. 2019. Integral Formulations of Volumetric Transmittance. ACM Trans. Graph. 38, 6, Article 154 (nov 2019), 17 pages.
[15]
Adam Geva, Yoav Y Schechner, Yonatan Chernyak, and Rajiv Gupta. 2018. X-ray computed tomography through scatter. In Proceedings of The European Conference on Computer Vision (ECCV). 34--50.
[16]
Ioannis Gkioulekas, Anat Levin, and Todd Zickler. 2016. An evaluation of computational imaging techniques for heterogeneous inverse scattering. In European Conference on Computer Vision. Springer, 685--701.
[17]
Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013. Inverse volume rendering with material dictionaries. ACM Transactions on Graphics (TOG) 32, 6 (2013), 1--13.
[18]
A.W. Harzing. 2007. Publish or Perish. https://harzing.com/resources/publish-or-perish.
[19]
Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala, and Samuli Laine. 2021. Appearance-Driven Automatic 3D Model Simplification. In Eurographics Symposium on Rendering.
[20]
Hailin Jin, Stefano Soatto, and Anthony J. Yezzi. 2005. Multi-view stereo reconstruction of dense shape and complex appearance. International Journal of Computer Vision 63, 3 (2005), 175--189.
[21]
James T. Kajiya and Brian P Von Herzen. 1984. Ray Tracing Volume Densities. SIG-GRAPH Comput. Graph. 18, 3 (jan 1984), 165--174.
[22]
Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2017. Neural 3D Mesh Renderer. CoRR abs/1711.07566 (2017). arXiv:1711.07566 http://arxiv.org/abs/1711.07566
[23]
Markus Kettunen, Eugene D'Eon, Jacopo Pantaleoni, and Jan Novák. 2021. An Unbiased Ray-Marching Transmittance Estimator. ACM Trans. Graph. 40, 4, Article 137 (jul 2021), 20 pages.
[24]
Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner. 2016. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph. 35, 1, Article 1 (dec 2016), 26 pages.
[25]
Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
[26]
Oliver Klehm, Ivo Ihrke, Hans-Peter Seidel, and Elmar Eisemann. 2014. Property and Lighting Manipulations for Static Volume Stylization Using a Painting Metaphor. IEEE Transactions on Visualization and Computer Graphics 20, 7 (2014), 983--995.
[27]
Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and Decomposition Tracking for Rendering Heterogeneous Volumes. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2017) 36, 4, Article 111 (2017), 111:1--111:16 pages.
[28]
Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. 2020. Modular primitives for high-performance differentiable rendering. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1--14.
[29]
Aldo Laurentini. 1994. The Visual Hull Concept for Silhouette-Based Image Understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16, 2 (feb 1994), 150--162.
[30]
Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable Monte Carlo Ray Tracing through Edge Sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6 (2018), 222:1--222:11.
[31]
Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020. Neural Sparse Voxel Fields. NeurIPS (2020). https://lingjie0206.github.io/papers/NSVF/
[32]
Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. 2019. Soft Rasterizer: Differentiable Rendering for Unsupervised Single-View Mesh Reconstruction. CoRR abs/1901.05567 (2019). arXiv:1901.05567 http://arxiv.org/abs/1901.05567
[33]
Tamar Loeub, Aviad Levis, Vadim Holodovsky, and Yoav Y Schechner. 2020. Monotonicity prior for cloud tomography. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XVIII 16. Springer, 283--299.
[34]
Matthew M. Loper and Michael J. Black. 2014. OpenDR: An approximate differentiable renderer. In European Conference on Computer Vision. Springer.
[35]
Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth. 2021. NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections. In CVPR.
[36]
Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul Srinivasan, and Jonathan T. Barron. 2021. NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images. arXiv:2111.13679 (Nov. 2021).
[37]
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV.
[38]
Bailey Miller, Iliyan Georgiev, and Wojciech Jarosz. 2019. A Null-Scattering Path Integral Formulation of Light Transport. ACM Trans. Graph. 38, 4, Article 44 (jul 2019), 13 pages.
[39]
Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. arXiv:2201.05989 (Jan. 2022).
[40]
Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fidler. 2021. Extracting Triangular 3D Models, Materials, and Lighting From Images. arXiv:2111.12503 (2021).
[41]
Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, and Wenzel Jakob. 2020. Radiative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering. Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020).
[42]
Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse Renderer. Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Dec. 2019).
[43]
Thomas Klaus Nindel, Tomáš Iser, Tobias Rittig, Alexander Wilkie, and Jaroslav Křivánek. 2021. A Gradient-Based Framework for 3D Print Appearance Optimization. ACM Trans. Graph. 40, 4, Article 178 (July 2021), 15 pages.
[44]
Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual Ratio Tracking for Estimating Attenuation in Participating Media. ACM Trans. Graph. 33, 6, Article 179 (nov 2014), 11 pages.
[45]
Felix Petersen, Amit H. Bermano, Oliver Deussen, and Daniel Cohen-Or. 2019. Pix2Vex: Image-to-Geometry Reconstruction using a Smooth Differentiable Renderer. CoRR abs/1903.11149 (2019). arXiv:1903.11149 http://arxiv.org/abs/1903.11149
[46]
Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian Theobalt. 2015. A Versatile Scene Model with Differentiable Visibility Applied to Generative Pose Estimation. In Proceedings of ICCV 2015.
[47]
Roi Ronen, Yoav Y. Schechner, and Eshkol Eytan. 2021. 4D Cloud Scattering Tomography. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 5520--5529.
[48]
Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion Revisited. In Conference on Computer Vision and Pattern Recognition (CVPR).
[49]
Yael Sde-Chen, Yoav Y. Schechner, Vadim Holodovsky, and Eshkol Eytan. 2021. 3DeepCT: Learning volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 5671--5682.
[50]
Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron. 2021. NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis. In CVPR.
[51]
Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2021a. Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction. arXiv:2111.11215 (Nov. 2021).
[52]
Qilin Sun, Congli Wang, Fu Qiang, Dun Xiong, and Heidrich Wolfgang. 2021b. End-to-end complex lens design with differentiable ray tracing. ACM Transactions on Graphics 40, 4 (2021), 1--13.
[53]
Jean-Marc Tregan, Stéphane Blanco, Jérémi Dauchet, Mouna El Hafi, Richard Fournier, L. Ibarrart, P. Lapeyre, and Najda Villefranque. 2020. Convergence issues in derivatives of Monte Carlo null-collision integral formulations: a solution. J. Comput. Phys. 413 (2020), 109463.
[54]
Chia-Yin Tsai, Aswin C. Sankaranarayanan, and Ioannis Gkioulekas. 2019. Beyond Volumetric Albedo-A Surface Optimization Framework for Non-Line-Of-Sight Imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1545--1555.
[55]
Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. 419--428.
[56]
Delio Vicini, Wenzel Jakob, and Anton Kaplanyan. 2021a. A non-exponential transmittance model for volumetric scene representations. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1--16.
[57]
Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021b. Path Replay Backpropagation: Differentiating Light Paths using Constant Memory and Linear Time. Transactions on Graphics (Proceedings of SIGGRAPH) 40, 4 (Aug. 2021), 108:1--108:14.
[58]
E. Woodcock, T. Murphy, P. Hemmings, and S. Longworth. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. In Proceedings of the Conference on Applications of Computing Methods to Reactor Problems. Argonne National Laboratory, 557.
[59]
Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume rendering of neural implicit surfaces. Advances in Neural Information Processing Systems 34 (2021).
[60]
Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa. 2021a. Plenoxels: Radiance Fields without Neural Networks. arXiv:2112.05131 (Dec. 2021).
[61]
Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021b. PlenOctrees for Real-time Rendering of Neural Radiance Fields. In ICCV.
[62]
Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob. 2021. Monte Carlo Estimators for Differential Light Transport. Transactions on Graphics (Proceedings of SIGGRAPH) 40, 4 (Aug. 2021).
[63]
Cheng Zhang, Zhao Dong, Michael Doggett, and Shuang Zhao. 2021a. Antithetic sampling for Monte Carlo differentiable rendering. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1--12.
[64]
Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020. Path-Space Differentiable Rendering. ACM Trans. Graph. 39, 4 (2020), 143:1--143:19.
[65]
Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and Shuang Zhao. 2019. A differential theory of radiative transfer. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1--16.
[66]
Cheng Zhang, Zihan Yu, and Shuang Zhao. 2021b. Path-Space Differentiable Rendering of Participating Media. ACM Trans. Graph. 40, 4 (2021), 76:1--76:15.
[67]
Shuang Zhao, Ravi Ramamoorthi, and Kavita Bala. 2014. High-order similarity relations in radiative transfer. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--12.
[68]
Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016. Downsampling Scattering Parameters for Rendering Anisotropic Media. ACM Trans. Graph. 35, 6, Article 166 (nov 2016), 11 pages.
[69]
Quan Zheng, Gurprit Singh, and Hans-Peter Seidel. 2021. Neural Relightable Participating Media Rendering. Advances in Neural Information Processing Systems 34 (2021).

Cited By

View all
  • (2025)Don't Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive MediaACM Transactions on Graphics10.1145/371185344:1(1-17)Online publication date: 3-Feb-2025
  • (2025)Inverse rendering of fusion plasmas: inferring plasma composition from imaging systemsNuclear Fusion10.1088/1741-4326/ad9ab565:2(026020)Online publication date: 6-Jan-2025
  • (2024)Inverse Rendering for Tomographic Volumetric Additive ManufacturingACM Transactions on Graphics10.1145/368792443:6(1-17)Online publication date: 19-Dec-2024
  • Show More Cited By

Index Terms

  1. Unbiased inverse volume rendering with differential trackers

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 41, Issue 4
    July 2022
    1978 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3528223
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 July 2022
    Published in TOG Volume 41, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. differentiable rendering
    2. importance sampling
    3. inverse rendering
    4. radiative backpropagation
    5. volumetric rendering

    Qualifiers

    • Research-article

    Funding Sources

    • Swiss National Science Foundation

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)101
    • Downloads (Last 6 weeks)7
    Reflects downloads up to 01 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Don't Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive MediaACM Transactions on Graphics10.1145/371185344:1(1-17)Online publication date: 3-Feb-2025
    • (2025)Inverse rendering of fusion plasmas: inferring plasma composition from imaging systemsNuclear Fusion10.1088/1741-4326/ad9ab565:2(026020)Online publication date: 6-Jan-2025
    • (2024)Inverse Rendering for Tomographic Volumetric Additive ManufacturingACM Transactions on Graphics10.1145/368792443:6(1-17)Online publication date: 19-Dec-2024
    • (2024)Target-Aware Image Denoising for Inverse Monte Carlo RenderingACM Transactions on Graphics10.1145/365818243:4(1-11)Online publication date: 19-Jul-2024
    • (2024)Conditional Mixture Path Guiding for Differentiable RenderingACM Transactions on Graphics10.1145/365813343:4(1-11)Online publication date: 19-Jul-2024
    • (2024)Importance Sampling BRDF DerivativesACM Transactions on Graphics10.1145/364861143:3(1-21)Online publication date: 9-Apr-2024
    • (2024)Visual Tomography: Physically Faithful Volumetric Models of Partially Translucent Objects2024 International Conference on 3D Vision (3DV)10.1109/3DV62453.2024.00159(1605-1615)Online publication date: 18-Mar-2024
    • (2024)Three approaches on estimating geometric sensitivities in radiative transfer with Monte CarloJournal of Quantitative Spectroscopy and Radiative Transfer10.1016/j.jqsrt.2024.109104326(109104)Online publication date: Nov-2024
    • (2024)Image-based reconstruction of heterogeneous media in the presence of multiple light-scatteringComputers and Graphics10.1016/j.cag.2024.01.004119:COnline publication date: 18-Jul-2024
    • (2024)Understanding and mitigating climate change impacts on ecosystem health and functionalityRendiconti Lincei. Scienze Fisiche e Naturali10.1007/s12210-024-01259-4Online publication date: 17-Aug-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media