[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Counterpoint: Representing Forged Concepts as Emergent Variables Using Composite-Based Structural Equation Modeling

Published: 28 December 2021 Publication History

Abstract

Studying and modeling theoretical concepts is a cornerstone activity in information systems (IS) research. Researchers have been familiar with one type of theoretical concept, namely behavioral concepts, which are assumed to exist in nature and measured by a set of observable variables. In this paper, we present a second type of theoretical concept, namely forged concepts, which are designed and assumed to emerge within their environment. While behavioral concepts are classically operationalized as latent variables, forged concepts are better specified as emergent variables. Additionally, we propose composite-based structural equation modeling (SEM) as a subtype of SEM that is eminently suitable to analyze models containing emergent variables. We shed light on the composite-based SEM steps: model specification, model identification, model estimation, and model assessment. Then, we present an illustrative example from the domain of IS research to demonstrate these four steps and show how modeling with emergent variables proceeds.

References

[1]
Aguirre-Urreta, M. I., Rönkkö, M., & Marakas, G. M. (2016). Omission of causal indicators: Consequences and implications for measurement. Measurement: Interdisciplinary Research and Perspectives, 14(3), 75--97.
[2]
Ahuja, M., Chudoba, K. M., Kacmar, C. J., McKnight, D. H., & George, J. F. (2007). IT road warriors: Balancing work-family conflict, job autonomy, and work overload to mitigate turnover intentions. MIS Quarterly, 31(1), 1--17.
[3]
Allen, M. W., Armstrong, D. J., Reid, M. F., & Riemenschneider, C. K. (2009). IT employee retention: Employee expectations and workplace environments. SIGMIS CPR '09: Proceedings of the special interest group on management information system's 47th annual conference on Computer personnel research, 95--100.
[4]
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411--423.
[5]
Andreu, R., & Ciborra, C. (1996). Organisational learning and core capabilities development: The role of IT. The Journal of Strategic Information Systems, 5(2), 111--127.
[6]
Armstrong, D. J., Brooks, N. G., & Riemenschneider, C. K. (2015). Exhaustion from information system career experience: Implications for turn-away intention. MIS Quarterly, 39(3), 713--727.
[7]
Armstrong, D. J., Riemenschneider, C., Buche, M., & Armstrong, K. (2018). Mitigating turnover intentions: Are all IT workers warriors? AIS Transactions on Replication Research, 4, 1--20.
[8]
Bagozzi, R. P., & Phillips, L. W. (1982). Representing and testing organizational theories: A holistic construal. Administrative Science Quarterly, 27(3), 459--489.
[9]
Barney, J. B. (2012). Purchasing, supply chain management and sustained competitive advantage: The relevance of resource-based theory. Journal of Supply Chain Management, 48(2), 3--6.
[10]
Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & Management, 57(2), 103168.
[11]
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588--606.
[12]
Bentler, P. M. (1990). Comparativet indexes in structural models. Psychological Bulletin, 107(2), 238--246.
[13]
Bentler, P. M. (2006). EQS 6 Structural Equations Program Manual. Multivariate Software, Inc.
[14]
Beran, R., & Srivastava, M. S. (1985). Bootstrap tests and confidence regions for functions of a covariance matrix. The Annals of Statistics, 13(1), 95--115.
[15]
Blalock, H. M. (1964). Causal inferences in nonexperimental research. University of North Carolina Press.
[16]
Bollen, K. A. (1984). Multiple indicators: Internal consistency or no necessary relationship? Quality and Quantity, 18(4), 377--385.
[17]
Bollen, K. A. (1989). Structural Equations with Latent Variables. Wiley.
[18]
Bollen, K. A. (2011). Evaluating effect, composite, and causal indicators in structural equation models. MIS Quarterly, 35(2), 359--372.
[19]
Bollen, K. A., & Diamantopoulos, A. (2017a). In defense of causal--formative indicators: A minority report. Psychological Methods, 22(3), 581--596.
[20]
Bollen, K. A., & Diamantopoulos, A. (2017b). Notes on measurement theory for causal-formative indicators: A reply to Hardin. Psychological Methods, 22(3), 605--608.
[21]
Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110(2), 305--314.
[22]
Borsboom, D. (2008). Latent variable theory. Measurement: Interdisciplinary Research & Perspective, 6(1--2), 25--53.
[23]
Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110(2), 203--219.
[24]
Brown, S. A., & Venkatesh, V. (2005). Model of adoption of technology in households: A baseline model test and extension incorporating household life cycle. MIS Quarterly, 29(3), 399--426.
[25]
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model t. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136--162). Sage.
[26]
Cho, G., & Choi, J. Y. (2020). An empirical comparison of generalized structured component analysis and partial least squares path modeling under variance-based structural equation models. Behaviormetrika, 47, 243--272.
[27]
Cho, G., Hwang, H., Sarstedt, M., & M., R. C. (2020). Cuto? criteria for overall model t indexes in generalized structured component analysis. Journal of Marketing Analytics, 8, 189--202.
[28]
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319--340.
[29]
Devlieger, I., & Rosseel, Y. (2017). Factor score path analysis: An alternative for SEM. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 13, 31--38.
[30]
Diamantopoulos, A. (2011). Incorporating formative measures into covariance-based structural equation models. MIS Quarterly, 35(2), 335--358.
[31]
Diamantopoulos, A., Rieer, P., & Roth, K. P. (2008). Advancing formative measurement models. Journal of Business Research, 61(12), 1203--1218.
[32]
Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: An alternative to scale development. Journal of Marketing Research, 38(2), 269--277.
[33]
Dijkstra, T. K. (2013). Composites as factors: Canonical variables revisited [Working Paper].
[34]
Dijkstra, T. K. (2017). A perfect match between a model and a mode. In H. Latan & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, methodological issues and applications (pp. 55--80). Springer.
[35]
Dijkstra, T. K., & Henseler, J. (2015a). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis, 81, 10--23.
[36]
Dijkstra, T. K., & Henseler, J. (2015b). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 297--316.
[37]
Dimoka, A., Hong, Y., & Pavlou, P. A. (2012). On product uncertainty in online markets: Theory and evidence. MIS Quarterly, 36(2), 395--426.
[38]
Edgeworth, F. Y. (1888). The statistics of examinations. Journal of the Royal Statistical Society, 51(3), 599--635.
[39]
Ellram, L. M., Tate, W. L., & Feitzinger, E. G. (2013). Factor-market rivalry and competition for supply chain resources. Journal of Supply Chain Management, 49(1), 29--46.
[40]
Fornell, C., & Bookstein, F. L. (1982). Two Structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440--452.
[41]
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51--90.
[42]
Grace, J. B., & Bollen, K. A. (2008). Representing general theoretical concepts in structural equation models: The role of composite variables. Environmental and Ecological Statistics, 15(2), 191--213.
[43]
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017). Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616--632.
[44]
Hardin, A. (2017). A call for theory to support the use of causal-formative indicators: A commentary on Bollen and Diamantopoulos (2017). Psychological Methods, 22(3), 597--604.
[45]
Heise, D. R. (1972). Employing nominal variables, induced variables, and block variables in path analyses. Sociological Methods & Research, 1(2), 147--173.
[46]
Henseler, J. (2015). Is the whole more than the sum of its parts? On the interplay of marketing and design research. Universiteit Twente.
[47]
Henseler, J. (2017). Bridging design and behavioral research with variance-based structural equation modeling. Journal of Advertising, 46(1), 178--192.
[48]
Henseler, J. (2021). Composite-based structural equation modeling: Analyzing latent and emergent variables. Guilford Press.
[49]
Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common beliefs and reality about PLS: Comments on Rönkkö and Evermann (2013). Organizational Research Methods, 17(2), 182--209.
[50]
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2--20.
[51]
Henseler, J., & Schuberth, F. (2020a). Auxiliary theories. In J. Henseler (Ed.), Composite-based structural equation modeling: Analyzing latent and emergent variables (pp. 25--37) (Methodology in the Social Sciences Series). Guilford Press.
[52]
Henseler, J., & Schuberth, F. (2020b). Using confirmatory composite analysis to assess emergent variables in business research. Journal of Business Research, 120, 147--156.
[53]
Ho, V. T., Ang, S., & Straub, D. (2003). When subordinates become IT contractors: Persistent managerial expectations in IT outsourcing. Information Systems Research, 14(1), 66--86.
[54]
Hubona, G. S., Schuberth, F., & Henseler, J. (2021). A clarification of confirmatory composite analysis (CCA). International Journal of Information Management, 61, 102399.
[55]
Hwang, H., Cho, G., Jung, K., Falk, C., Flake, J., Jin, M. J., & Lee, S. H. (2021). An approach to structural equation modeling with both factors and components: Integrated generalized structured component analysis. Psychological Methods, 26(3), 273--294.
[56]
Hwang, H., Takane, Y. & Jung, K. (2017). Generalized structured component analysis with uniqueness terms for accommodating measurement error. Frontiers in Psychology, 8, 2137.
[57]
Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69(1), 81--99.
[58]
Jarvis, C. B., Mackenzie, S. B., & Podsako?, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2), 199--218.
[59]
Johnston, A. C., & Warkentin, M. (2010). Fear appeals and information security behaviors: An empirical study. MIS Quarterly, 34(3), 549--566.
[60]
Jöreskog, K. G. (1970). A general method for analysis of covariance structures. Biometrika, 57(2), 239--251.
[61]
Jöreskog, K. G., & Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70(351), 631--639.
[62]
Jöreskog, K. G., & Sörbom, D. (1982). Recent developments in structural equation modeling. Journal of Marketing Research, 19(4), 404--416.
[63]
Joseph, D., Ng, K.-Y., Koh, C., & Ang, S. (2007). Turnover of information technology professionals: A narrative review, meta-analytic structural equation modeling, and model development. MIS Quarterly, 31(3), 547--577.
[64]
Karimi, J., Somers, T. M., & Gupta, Y. P. (2004). Impact of environmental uncertainty and task characteristics on user satisfaction with data. Information Systems Research, 15(2), 175--193.
[65]
Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
[66]
Lance, C. E., Cornwell, J. M., & Mulaik, S. A. (1988). Limited information parameter estimates for latent or mixed manifest and latent variable models. Multivariate Behavioral Research, 23(2), 171--187.
[67]
Law, K. S., & Wong, C.-S. (1999). Multidimensional constructs in structural equation analysis: An illustration using the job perception and job satisfaction constructs. Journal of Management, 25(2), 143--160.
[68]
Lewis, W., Agarwal, R., & Sambamurthy, V. (2003). Sources of influence on beliefs about information technology use: An empirical study of knowledge workers. MIS Quarterly, 27(4), 657--678.
[69]
Marcoulides, G. A., & Chin, W. W. (2013). You write, but others read: Common methodological misunderstandings in PLS and related methods. In H. Abdi, V. E. Vinzi, G. Russolillo, & L. Trinchera (Eds.), New perspectives in partial least squares and related methods (pp. 31--64). Springer.
[70]
Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cuto? values for fit indexes and dangers in overgeneralizing Hu and Bentler's (1999) findings. Structural Equation Modeling: A Multidisciplinary Journal, 11(3), 320--341.
[71]
Martin, E. S., & Quintana, F. (2002). Consistency and identiability revisited. Brazilian Journal of Probability and Statistics, 16, 99--106.
[72]
Moquin, R., Riemenschneider, C. K., & Wakefield, R. L. (2019). Psychological contract and turnover intention in the information technology profession. Information Systems Management, 36(2), 111--125.
[73]
Mosier, C. I. (1943). On the reliability of a weighted composite. Psychometrika, 8(3), 161--168.
[74]
Müller, T., Schuberth, F., & Henseler, J. (2018). PLS path modeling-A confirmatory approach to study tourism technology and tourist behavior. Journal of Hospitality and Tourism Technology, 9(3), 249--266.
[75]
Muthén, B. O., & Curran, P. J. (1997). General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods, 2(4), 371--402.
[76]
Muthén, L. K., & Muthén, B. O. (1998--2017). Mplus (8th). Muthén & Muthén.
[77]
Novick, M. R. (1966). The axioms and principal results of classical test theory. Journal of Mathematical Psychology, 3(1), 1--18.
[78]
Peng, D. X., Schroeder, R. G., & Shah, R. (2008). Linking routines to operations capabilities: A new perspective. Journal of Operations Management, 26(6), 730--748.
[79]
Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information systems research. MIS Quarterly, 31(4), 623--656.
[80]
Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Generalized multilevel structural equation modeling. Psychometrika, 69(2), 167--190.
[81]
Rademaker, M. E., Schuberth, F., & Dijkstra, T. K. (2019). Measurement error correlation within blocks of indicators in consistent partial least squares. Internet Research, 29(3), 448--463.
[82]
Rai, A., Patnayakuni, R., & Seth, N. (2006). Firm performance impacts of digitally enabled supply chain integration capabilities. MIS Quarterly, 30(2), 225--246.
[83]
Rasoolimanesh, S. M., Noor, S. M., Schuberth, F., & Jaafar, M. (2019). Investigating the effects of tourist engagement on satisfaction and loyalty. The Service Industries Journal, 39(7--8), 559--574.
[84]
Reichenbach, H. (1956). The Direction of Time. University of California Press.
[85]
Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. Long Range Planning, 45(5--6), 341--358.
[86]
Rigdon, E. E. (1995). A necessary and sufficient identification rule for structural models estimated in practice. Multivariate Behavioral Research, 30(3), 359--383.
[87]
Rigdon, E. E. (2016). Choosing PLS path modeling as analytical method in European management research: A realist perspective. European Management Journal, 34(6), 598--605.
[88]
Rutner, P. S., Hardgrave, B. C., & McKnight, D. H. (2008). Emotional dissonance and the information technology professional. MIS Quarterly, 32(3), 635--652.
[89]
Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016). Estimation issues with PLS and CBSEM: Where the bias lies! Journal of Business Research, 69(10), 3998--4010.
[90]
Savalei, V. (2014). Understanding robust corrections in structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 21(1), 149--160.
[91]
Schuberth, F. (2021). Confirmatory composite analysis using partial least squares: Setting the record straight. Review of Managerial Science, 15, 1311--1345.
[92]
Schuberth, F. (in press). The Henseler-Ogasawara specification of composites in structural equation modeling: A tutorial. Psychological Methods.
[93]
Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Confirmatory composite analysis. Frontiers in Psychology, 9, 2541.
[94]
Schuberth, F., Rademaker, M. E., & Henseler, J. (Accepted). Assessing the overall fit of composite models estimated by partial least squares path modeling. European Journal of Marketing.
[95]
Schuberth, F., Rademaker, M. E., & Henseler, J. (2020). Estimating and assessing second-order constructs using PLS-PM: The case of composites of composites. Industrial Management & Data Systems, 120(12), 2211--2241.
[96]
Schumacker, R. E., & Lomax, R. G. (2009). A Beginner's Guide to Structural Equation Modeling (3rd). Routledge.
[97]
Thatcher, J. B., Wright, R. T., Sun, H., Zagenczyk, T. J., & Klein, R. (2018). Mindfulness in information technology use: Definitions, distinctions, and a new measure. MIS Quarterly, 42(3), 831--848.
[98]
Tucker, L. R., & Lewis, C. (1973). A reliability coeficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1--10.
[99]
van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 28(4), 695--704.
[100]
van Riel, A. C., Henseler, J., Kemény, I., & Sasovova, Z. (2017). Estimating hierarchical constructs using consistent partial least squares: The case of second-order composites of common factors. Industrial Management & Data Systems, 117(3), 459--477.
[101]
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157--178.
[102]
Whetten, D. A. (1989). What constitutes a theoretical contribution? Academy of Management Review, 14(4), 490--495.
[103]
Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85--102.
[104]
Wold, H. (1975). Path models with latent variables: The NIPALS approach. In H. Blalock, A. Aganbegian, F. Borodkin, R. Boudon, & V. Capecchi (Eds.), Quantitative Sociology (pp. 307--357). Academic Press.
[105]
Xu, J., Benbasat, I., & Cenfetelli, R. T. (2013). Integrating service quality with system and information quality: An empirical test in the e-service context. MIS Quarterly, 37(3), 777--794.
[106]
Yuan, K.-H., & Bentler, P. M. (1997). Mean and covariance structure analysis: Theoretical and practical improvements. Journal of the American Statistical Association, 92(438), 767--774.
[107]
Yuan, K.-H., & Bentler, P. M. (1999). F tests for mean and covariance structure analysis. Journal of Educational and Behavioral Statistics, 24(3), 225--243.
[108]
Zhang, X., & Venkatesh, V. (2017). A nomological network of knowledge management system use: Antecedents and consequences. MIS Quarterly, 41(4), 1275--1306.

Cited By

View all
  • (2024)Exploring the Effects of Teachers’ Practices in the Early Childhood Literacy Classroom Environment on Children’s Acquisition of Literacy SkillsEducation Sciences10.3390/educsci1405045314:5(453)Online publication date: 25-Apr-2024
  • (2024)Investigating the role of fiqh zakat knowledge in moderating the behaviour of the Acehnese to pay zakat digitallyJournal of Islamic Marketing10.1108/JIMA-02-2023-0055Online publication date: 20-Jun-2024
  • (2024)Categorizing behavioral and formed concepts in sports marketing researchInternational Journal of Sports Marketing and Sponsorship10.1108/IJSMS-10-2022-018825:2(310-329)Online publication date: 6-Feb-2024
  • Show More Cited By

Index Terms

  1. Counterpoint: Representing Forged Concepts as Emergent Variables Using Composite-Based Structural Equation Modeling

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM SIGMIS Database: the DATABASE for Advances in Information Systems
      ACM SIGMIS Database: the DATABASE for Advances in Information Systems  Volume 52, Issue SI
      December 2021
      126 pages
      ISSN:0095-0033
      EISSN:1532-0936
      DOI:10.1145/3505639
      Issue’s Table of Contents
      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 28 December 2021
      Published in SIGMIS Volume 52, Issue SI

      Check for updates

      Author Tags

      1. behavioral concept
      2. composite model
      3. composite-based structural equation modeling
      4. emergent variables
      5. forged concept

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)71
      • Downloads (Last 6 weeks)9
      Reflects downloads up to 12 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Exploring the Effects of Teachers’ Practices in the Early Childhood Literacy Classroom Environment on Children’s Acquisition of Literacy SkillsEducation Sciences10.3390/educsci1405045314:5(453)Online publication date: 25-Apr-2024
      • (2024)Investigating the role of fiqh zakat knowledge in moderating the behaviour of the Acehnese to pay zakat digitallyJournal of Islamic Marketing10.1108/JIMA-02-2023-0055Online publication date: 20-Jun-2024
      • (2024)Categorizing behavioral and formed concepts in sports marketing researchInternational Journal of Sports Marketing and Sponsorship10.1108/IJSMS-10-2022-018825:2(310-329)Online publication date: 6-Feb-2024
      • (2024)Strategic-hybrid orientations and perceived business performance in medium/high-tech SMEsEuropean Business Review10.1108/EBR-09-2023-0272Online publication date: 13-May-2024
      • (2024)Should PLS become factor-based or should CB-SEM become composite-based? Both!European Journal of Information Systems10.1080/0960085X.2024.2357123(1-13)Online publication date: 23-May-2024
      • (2024)When and how to use confirmatory composite analysis (CCA) in second language researchStudies in Second Language Acquisition10.1017/S027226312400002046:2(597-616)Online publication date: 6-Feb-2024
      • (2024)Using tourism intelligence and big data to explain flight searches for tourist destinations: The case of the Costa Blanca (Spain)Tourism Management Perspectives10.1016/j.tmp.2024.10124351(101243)Online publication date: Mar-2024
      • (2023)Do ESG controversies moderate the relationship between CSR and corporate financial performance in oil and gas firms?Humanities and Social Sciences Communications10.1057/s41599-023-02256-y10:1Online publication date: 28-Oct-2023
      • (2023)Mastery and social position: factors in negotiating urban social resilienceHumanities and Social Sciences Communications10.1057/s41599-023-02217-510:1Online publication date: 12-Oct-2023
      • (2023)The choice of structural equation modeling technique matters: A commentary on Dash and Paul (2021)Technological Forecasting and Social Change10.1016/j.techfore.2023.122665194(122665)Online publication date: Sep-2023
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media