[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Improving Early Prognosis of Dementia Using Machine Learning Methods

Published: 07 April 2022 Publication History

Abstract

Early and precise prognosis of dementia is a critical medical challenge. The design of an optimal computational model that addresses this issue, and at the same time explains the underlying mechanisms that lead to output decisions, is an ongoing challenge. In this study, we focus on assessing the risk of an individual converting to Dementia in the short (next year) and long (one to five years) term, given only a few early-stage observations. Our goal is to develop a machine learning model that could assist the prediction of dementia from regular clinical data. The results show that combining various machine learning techniques together can successfully define ways to identify the risks of developing dementia over the following five years with accuracies considerably above average rates. These findings suggest that accurately developed models can be considered as a promising tool to improve early dementia prognosis.

References

[1]
Nicola Amoroso, Domenico Diacono, Annarita Fanizzi, Marianna La Rocca, Alfonso Monaco, Angela Lombardi, Cataldo Guaragnella, Roberto Bellotti, Sabina Tangaro, Alzheimer’s Disease Neuroimaging Initiative, et al. 2018. Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge. J. Neurosci. Methods 302 (2018), 3–9.
[2]
Sylvaine Artero, Marie-Laure Ancelin, Florence Portet, A. Dupuy, Claudine Berr, Jean-François Dartigues, Christophe Tzourio, Olivier Rouaud, Michel Poncet, Florence Pasquier, et al. 2008. Risk profiles for mild cognitive impairment and progression to dementia are gender specific. J. Neurol. Neurosurg. Psych. 79, 9 (2008), 979–984.
[3]
Gopi Battineni, Nalini Chintalapudi, and Francesco Amenta. 2019. Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM). Inform. Med. Unlock. 16 (2019), 100200.
[4]
Leo Breiman. 2001. Random forests. Mach. Learn. 45, 1 (2001), 5–32.
[5]
Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, and Yuan Tang. 2015. Xgboost: Extreme gradient boosting. R Package, Version 0.4-2 (2015), 1–4.
[6]
Robert Clarke, A. David Smith, Kim A. Jobst, Helga Refsum, Lesley Sutton, and Per M. Ueland. 1998. Folate, vitamin B12, and serum total homocysteine levels in confirmed alzheimer disease. Arch. Neurol. 55, 11 (1998), 1449–1455.
[7]
Claudia Cooper, Andrew Sommerlad, Constantine G. Lyketsos, and Gill Livingston. 2015. Modifiable predictors of dementia in mild cognitive impairment: A systematic review and meta-analysis. Amer. J. Psych. 172, 4 (2015), 323–334.
[8]
Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Mach. Learn. 20, 3 (1995), 273–297.
[9]
Thomas G. Dietterich. 2000. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Mach. Learn. 40, 2 (2000), 139–157.
[10]
Yufeng Ding and Jeffrey S. Simonoff. 2010. An investigation of missing data methods for classification trees applied to binary response data. J. Mach. Learn. Res. 11, 1 (2010).
[11]
Ana Espinosa, Montserrat Alegret, Sergi Valero, Georgina Vinyes-Junqué, Isabel Hernández, Ana Mauleón, Maitée Rosende-Roca, Agustín Ruiz, Oscar López, Lluís Tárraga, et al. 2013. A longitudinal follow-up of 550 mild cognitive impairment patients: Evidence for large conversion to dementia rates and detection of major risk factors involved. J. Alzheimer’s Dis. 34, 3 (2013), 769–780.
[12]
David Facal, Sonia Valladares-Rodriguez, Cristina Lojo-Seoane, Arturo X. Pereiro, Luis Anido-Rifon, and Onésimo Juncos-Rabadán. 2019. Machine learning approaches to studying the role of cognitive reserve in conversion from mild cognitive impairment to dementia. Int. J. Geriatric Psych. 34, 7 (2019), 941–949.
[13]
Jerome H. Friedman. 2001. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 5 (2001), 1189–1232.
[14]
Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and Francisco Herrera. 2011. A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev.) 42, 4 (2011), 463–484.
[15]
Xiao-He Hou, Lei Feng, Can Zhang, Xi-Peng Cao, Lan Tan, and Jin-Tai Yu. 2019. Models for predicting risk of dementia: A systematic review. J. Neurol. Neurosurg. Psych. 90, 4 (2019), 373–379.
[16]
Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and Bart Baesens. 2011. An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis. Supp. Syst. 51, 1 (2011), 141–154.
[17]
Jyoti Islam and Yanqing Zhang. 2018. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform. 5, 2 (2018), 2.
[18]
Emmanuel A. Jammeh, B. Carroll Camille, W. Pearson Stephen, Javier Escudero, Athanasios Anastasiou, Peng Zhao, Todd Chenore, John Zajicek, and Emmanuel Ifeachor. 2018. Machine-learning based identification of undiagnosed dementia in primary care: A feasibility study. BJGP Open 2, 2 (2018).
[19]
Taeho Jo, Kwangsik Nho, and Andrew J. Saykin. 2019. Deep learning in Alzheimer’s disease: Diagnostic classification and prognostic prediction using neuroimaging data. Front. Aging Neurosci. 11 (2019), 220.
[20]
David G. Kleinbaum, K. Dietz, M. Gail, Mitchel Klein, and Mitchell Klein. 2002. Logistic Regression. Springer.
[21]
Igor O. Korolev, Laura L. Symonds, Andrea C. Bozoki, and Alzheimer’s Disease Neuroimaging Initiative. 2016. Predicting progression from mild cognitive impairment to Alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification. PloS One 11, 2 (2016), e0138866.
[22]
Anastasia Krithara, Fotis Aisopos, Vassiliki Rentoumi, Anastasios Nentidis, Konstantinos Bougatiotis, Maria-Esther Vidal, Ernestina Menasalvas, Alejandro Rodriguez-Gonzalez, Eleftherios Samaras, Peter Garrard, et al. 2019. iasis: Towards heterogeneous big data analysis for personalized medicine. In Proceedings of the IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS’19). IEEE, 106–111.
[23]
Choong Ho Lee and Hyung-Jin Yoon. 2017. Medical big data: Promise and challenges. Kidney Res. Clin. Pract. 36, 1 (2017), 3.
[24]
Hongming Li, Mohamad Habes, David A. Wolk, Yong Fan, Alzheimer’s Disease Neuroimaging Initiative, et al. 2019. A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimer’s Dementia 15, 8 (2019), 1059–1070.
[25]
Donghuan Lu, Karteek Popuri, Gavin Weiguang Ding, Rakesh Balachandar, and Mirza Faisal Beg. 2018. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci. Rep. 8, 1 (2018), 1–13.
[26]
Saturnino Luz, Fasih Haider, Sofia de la Fuente, Davida Fromm, and Brian MacWhinney. 2020. Alzheimer’s dementia recognition through spontaneous speech: the ADReSS Challenge. Retrieved from https://arXiv:2004.06833.
[27]
Sabela C. Mallo, Sonia Valladares-Rodriguez, David Facal, Cristina Lojo-Seoane, Manuel J. Fernández-Iglesias, and Arturo X. Pereiro. 2020. Neuropsychiatric symptoms as predictors of conversion from MCI to dementia: A machine learning approach. Int. Psychogeriatr. 32, 3 (2020), 381–392.
[28]
Joao Maroco, Dina Silva, Ana Rodrigues, Manuela Guerreiro, Isabel Santana, and Alexandre de Mendonça. 2011. Data mining methods in the prediction of dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res. Notes 4, 1 (2011), 1–14.
[29]
Alex J. Mitchell and Mojtaba Shiri-Feshki. 2009. Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica 119, 4 (2009), 252–265.
[30]
Elaheh Moradi, Antonietta Pepe, Christian Gaser, Heikki Huttunen, Jussi Tohka, Alzheimer’s Disease Neuroimaging Initiative, et al. 2015. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104 (2015), 398–412.
[31]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12 (2011), 2825–2830.
[32]
Enrico Pellegrini, Lucia Ballerini, Maria del C. Valdes Hernandez, Francesca M. Chappell, Victor González-Castro, Devasuda Anblagan, Samuel Danso, Susana Muñoz-Maniega, Dominic Job, Cyril Pernet, et al. 2018. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review. Alzheimer’s Dementia: Diagn. Assess. Dis. Monitor. 10 (2018), 519–535.
[33]
R. C. Petersen. 2000. Mild cognitive impairment: Transition between aging and Alzheimer’s disease. Neurologia 15, 3 (2000), 93–101.
[34]
Ronald C. Petersen, Barbara Caracciolo, Carol Brayne, Serge Gauthier, Vesna Jelic, and Laura Fratiglioni. 2014. Mild cognitive impairment: A concept in evolution. J. Internal Med. 275, 3 (2014), 214–228.
[35]
Martin James Prince, Maelenn Mari Guerchet, and Matthew Prina. 2015. The Epidemiology and Impact of Dementia: Current State and Future Trends. WHO Thematic Briefing. World Health Organization.
[36]
Lior Rokach and Oded Z. Maimon. 2008. Data Mining with Decision Trees: Theory and Applications. Vol. 69. World Scientific, Singapore.
[37]
Aram So, Danial Hooshyar, Kun Woo Park, and Heui Seok Lim. 2017. Early diagnosis of dementia from clinical data by machine learning techniques. Appl. Sci. 7, 7 (2017), 651.
[38]
Daniel Stamate, Wajdi Alghamdi, Jeremy Ogg, Richard Hoile, and Fionn Murtagh. 2018. A machine learning framework for predicting dementia and mild cognitive impairment. In Proceedings of the 17th IEEE International Conference on Machine Learning and Applications (ICMLA’18). IEEE, 671–678.
[39]
Eugene Y. H. Tang, Stephanie L. Harrison, Linda Errington, Mark F. Gordon, Pieter Jelle Visser, Gerald Novak, Carole Dufouil, Carol Brayne, Louise Robinson, Lenore J. Launer, et al. 2015. Current developments in dementia risk prediction modelling: An updated systematic review. PLoS One 10, 9 (2015), e0136181.
[40]
Tom N. Tombaugh and Nancy J. McIntyre. 1992. The mini-mental state examination: A comprehensive review. J. Amer. Geriatr. Soc. 40, 9 (1992), 922–935.
[41]
C. Warren-Gash. 2019. Dementia Risk Prediction Models: What Do Policymakers Need to Know? PHG Foundation, University of Cambridge, Cambridge, UK.

Cited By

View all
  • (2024)Smart Solutions for Detecting, Predicting, Monitoring, and Managing Dementia in the Elderly: A SurveyIEEE Access10.1109/ACCESS.2024.342196612(100026-100056)Online publication date: 2024
  • (2023)An app for predicting patient dementia classes using convolutional neural networks (CNN) and artificial neural networks (ANN): Comparison of prediction accuracy in Microsoft ExcelMedicine10.1097/MD.0000000000032670102:4(e32670)Online publication date: 27-Jan-2023
  • (2022)Identifying the presence and severity of dementia by applying interpretable machine learning techniques on structured clinical recordsBMC Medical Informatics and Decision Making10.1186/s12911-022-02004-322:1Online publication date: 17-Oct-2022

Index Terms

  1. Improving Early Prognosis of Dementia Using Machine Learning Methods

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Computing for Healthcare
      ACM Transactions on Computing for Healthcare  Volume 3, Issue 3
      July 2022
      251 pages
      EISSN:2637-8051
      DOI:10.1145/3514183
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 07 April 2022
      Accepted: 01 November 2021
      Revised: 01 November 2021
      Received: 01 May 2021
      Published in HEALTH Volume 3, Issue 3

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Dementia
      2. machine learning
      3. prognosis

      Qualifiers

      • Research-article
      • Refereed

      Funding Sources

      • European Union’s Horizon 2020 research and innovation programme

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)203
      • Downloads (Last 6 weeks)13
      Reflects downloads up to 11 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Smart Solutions for Detecting, Predicting, Monitoring, and Managing Dementia in the Elderly: A SurveyIEEE Access10.1109/ACCESS.2024.342196612(100026-100056)Online publication date: 2024
      • (2023)An app for predicting patient dementia classes using convolutional neural networks (CNN) and artificial neural networks (ANN): Comparison of prediction accuracy in Microsoft ExcelMedicine10.1097/MD.0000000000032670102:4(e32670)Online publication date: 27-Jan-2023
      • (2022)Identifying the presence and severity of dementia by applying interpretable machine learning techniques on structured clinical recordsBMC Medical Informatics and Decision Making10.1186/s12911-022-02004-322:1Online publication date: 17-Oct-2022

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      Full Text

      HTML Format

      View this article in HTML Format.

      HTML Format

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media