[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3597066.3597085acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article
Open access

Stability Problems on D-finite Functions

Published: 24 July 2023 Publication History

Abstract

This paper continues the studies of symbolic integration by focusing on the stability problems on D-finite functions. We introduce the notion of stability index in order to investigate the order growth of the differential operators satisfied by iterated integrals of D-finite functions and determine bounds and exact formula for stability indices of several special classes of differential operators. With the basic properties of stability index, we completely solve the stability problem on general hyperexponential functions.

References

[1]
Sergei A. Abramov and Mark Van Hoeij. 1999. Integration of solutions of linear functional equations. Integral Transforms and Special Functions 8, 1-2 (1999), 3–12. https://doi.org/10.1080/10652469908819212 arXiv:http://dx.doi.org/10.1080/10652469908819212
[2]
Sergei A. Abramov, Ha Quang Le, and Ziming Li. 2005. Univariate Ore Polynomial Rings in Computer Algebra. J. of Mathematical Sci. 131, 5 (2005), 5885–5903. https://doi.org/10.1007/s10958-005-0449-8
[3]
Sergei A. Abramov and Mark van Hoeij. 1997. A Method for the Integration of Solutions of Ore Equations. In ISSAC ’97: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation. ACM, New York, NY, USA, 172–175. https://doi.org/10.1145/258726.258774
[4]
Shaoshi Chen. 2022. Stability Problems in Symbolic Integration. In ISSAC’22: Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation(ISSAC ’22). ACM, New York, NY, USA, 517–524. https://doi.org/10.1145/3476446.3535502
[5]
Li Guo, Georg Regensburger, and Markus Rosenkranz. 2014. On integro-differential algebras. J. Pure Appl. Algebra 218, 3 (2014), 456–473. https://doi.org/10.1016/j.jpaa.2013.06.015
[6]
Nicholas M. Katz. 1987. On the calculation of some differential galois groups. Inventiones mathematicae 87 (1987), 13–61.
[7]
Manuel Kauers. August 26, 2022. D-Finite Fuctions. Springer Nature.
[8]
E. R. Kolchin. 1973. Differential algebra and algebraic groups. Academic Press, New York-London. xviii+446 pages. Pure and Applied Mathematics, Vol. 54.
[9]
Leonard M. Lipshitz. 1989. D-finite power series. J. Algebra 122, 2 (1989), 353–373. https://doi.org/10.1016/0021-8693(89)90222-6
[10]
Oystein Ore. 1933. Theory of non-commutative polynomials. Ann. of Math. (2) 34, 3 (1933), 480–508. https://doi.org/10.2307/1968173
[11]
Bruno Salvy. 2019. Linear differential equations as a data structure. Found. Comput. Math. 19, 5 (2019), 1071–1112. https://doi.org/10.1007/s10208-018-09411-x
[12]
Richard P. Stanley. 1980. Differentiably finite power series. European J. Combin. 1, 2 (1980), 175–188.
[13]
Marius van der Put and Michael F. Singer. 2003. Galois theory of linear differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 328. Springer-Verlag, Berlin. xviii+438 pages. https://doi.org/10.1007/978-3-642-55750-7
[14]
Herbert S. Wilf and Doron Zeilberger. 1992. An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities. Invent. Math. 108, 3 (1992), 575–633. https://doi.org/10.1007/BF02100618
[15]
Doron Zeilberger. 1990. A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32 (1990), 321–368.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '23: Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation
July 2023
567 pages
ISBN:9798400700392
DOI:10.1145/3597066
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 July 2023

Check for updates

Author Tags

  1. D-finite functions
  2. stable Sets
  3. symbolic integration

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • CAS Project for Young Scientists in Basic Research
  • National Key Research and Development Project
  • the Youth Innovation Promotion Association
  • NSFC

Conference

ISSAC 2023

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 156
    Total Downloads
  • Downloads (Last 12 months)106
  • Downloads (Last 6 weeks)18
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media