[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3589437.3589440acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccbbConference Proceedingsconference-collections
research-article

Wavelet-Based Microbiome Correlations of Host Traits

Published: 20 July 2023 Publication History

Abstract

The gut microbiome is composed of a plethora of microorganisms, and these microbes contribute to overall human health. It has been shown that dysbiosis of the microbiome is associated with certain diseases, including colorectal cancer and diabetes, yet the role of the microbiome is still little-known. Here, we aim to develop a novel wavelet-based framework to dissect the microbiome correlations of host traits. Due to the clinical nature of the biological dataset, we utilize the discrete wavelet transform (DWT)—enabling us to impute sparse matrices and decompose the data into different frequency components. We further carry out regressions of host traits with the microbiome relative abundances followed by computing correlations between the regression-predicted trait values. Moreover, we visualize these microbiome correlations of host traits with heat maps and build microbiome correlations of host traits network. As a result, our results revealed that microbiome correlations of host traits are prevalent. Our wavelet-based microbiome correlations of host traits analytic framework aims to lay the foundation for further causality analysis of the complex interplays between the microbiome and host traits.

Supplementary Material

Presentation slides (ICCBB_Presentation.pptx)

References

[1]
Kasmanas, J. C., Bartholomäus, A., Corrêa, F. B., Tal, T., Jehmlich, N., Herberth, G., Von bergen, M., Stadler, P. F., Carvalho, A., & Nunes da rocha, U. (2020). HumanMetagenomeDB: A public repository of curated and standardized metadata for human metagenomes. Nucleic Acids Research, 49(D1), D743-D750. https://doi.org/10.1093/nar/gkaa1031
[2]
Kamada, N., Seo, S.-U., Chen, G. Y., & Núñez, G. (2013). Role of the gut microbiota in immunity and inflammatory disease. Nature Reviews Immunology, 13(5), 321-335. https://doi.org/10.1038/nri3430
[3]
Lukovac, S., Belzer, C., Pellis, L., Keijser, B. J., De vos, W. M., Montijn, R. C., & Roeselers, G. (2014). Differential modulation by akkermansia muciniphila and faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio, 5(4). https://doi.org/10.1128/mbio.01438-14
[4]
Wang, B., Yao, M., Lv, L., Ling, Z., & Li, L. (2017). The human microbiota in health and disease. Engineering, 3(1), 71-82. https://doi.org/10.1016/J.ENG.2017.01.008
[5]
Nelson, H., & Chia, N. (2019). Gut microbiome and colon cancer: A plausible explanation for dietary contributions to cancer. Journal of the American College of Surgeons, 229(3), 231-235. https://doi.org/10.1016/j.jamcollsurg.2019.05.003
[6]
Aleksandrova, K., Romero-mosquera, B., & Hernandez, V. (2017). Diet, gut microbiome and epigenetics: Emerging links with inflammatory bowel diseases and prospects for management and prevention. Nutrients, 9(9), 962. https://doi.org/10.3390/nu9090962
[7]
Joossens, M., Huys, G., Cnockaert, M., De preter, V., Verbeke, K., Rutgeerts, P., Vandamme, P., & Vermeire, S. (2011). Dysbiosis of the faecal microbiota in patients with crohn's disease and their unaffected relatives. Gut, 60(5), 631-637. https://doi.org/10.1136/gut.2010.223263
[8]
Morgan, X. C., Tickle, T. L., Sokol, H., Gevers, D., Devaney, K. L., Ward, D. V., Reyes, J. A., Shah, S. A., Leleiko, N., Snapper, S. B., Bousvaros, A., Korzenik, J., Sands, B. E., Xavier, R. J., & Huttenhower, C. (2012). Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biology, 13(9), R79. https://doi.org/10.1186/gb-2012-13-9-r79
[9]
Mottawea, W., Chiang, C.-K., Mühlbauer, M., Starr, A. E., Butcher, J., Abujamel, T., Deeke, S. A., Brandel, A., Zhou, H., Shokralla, S., Hajibabaei, M., Singleton, R., Benchimol, E. I., Jobin, C., Mack, D. R., Figeys, D., & Stintzi, A. (2016). Altered intestinal microbiota–host mitochondria crosstalk in new onset crohn's disease. Nature Communications, 7(1). https://doi.org/10.1038/ncomms13419
[10]
Kootte, R. S., Levin, E., Salojärvi, J., Smits, L. P., Hartstra, A. V., Udayappan, S. D., Hermes, G., Bouter, K. E., Koopen, A. M., Holst, J. J., Knop, F. K., Blaak, E. E., Zhao, J., Smidt, H., Harms, A. C., Hankemeijer, T., Bergman, J. J., Romijn, H. A., Schaap, F. G., . . . Nieuwdorp, M. (2017). Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metabolism, 26(4), 611-619.e6. https://doi.org/10.1016/j.cmet.2017.09.008
[11]
Org, E., Blum, Y., Kasela, S., Mehrabian, M., Kuusisto, J., Kangas, A. J., Soininen, P., Wang, Z., Ala-korpela, M., Hazen, S. L., Laakso, M., & Lusis, A. J. (2017). Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biology, 18(1). https://doi.org/10.1186/s13059-017-1194-2
[12]
Yang, T., Santisteban, M. M., Rodriguez, V., Li, E., Ahmari, N., Carvajal, J. M., Zadeh, M., Gong, M., Qi, Y., Zubcevic, J., Sahay, B., Pepine, C. J., Raizada, M. K., & Mohamadzadeh, M. (2015). Gut dysbiosis is linked to hypertension. Hypertension, 65(6), 1331-1340. https://doi.org/10.1161/hypertensionaha.115.05315
[13]
Li, J., Zhao, F., Wang, Y., Chen, J., Tao, J., Tian, G., Wu, S., Liu, W., Cui, Q., Geng, B., Zhang, W., Weldon, R., Auguste, K., Yang, L., Liu, X., Chen, L., Yang, X., Zhu, B., & Cai, J. (2017). Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome, 5(1). https://doi.org/10.1186/s40168-016-0222-x
[14]
Asnicar, F., Berry, S. E., Valdes, A. M., Nguyen, L. H., Piccinno, G., Drew, D. A., Leeming, E., Gibson, R., Le roy, C., Khatib, H. A., Francis, L., Mazidi, M., Mompeo, O., Valles-colomer, M., Tett, A., Beghini, F., Dubois, L., Bazzani, D., Thomas, A. M., . . . Waldron, L. (2021). Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nature Medicine, 27(2), 321-332. https://doi.org/10.1038/s41591-020-01183-8
[15]
Singh, R. K., Chang, H.-W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T. H., Bhutani, T., & Liao, W. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15(1). https://doi.org/10.1186/s12967-017-1175-y
[16]
The integrative human microbiome project. (2019). Nature, 569(7758), 641-648. https://doi.org/10.1038/s41586-019-1238-8
[17]
Pasolli, E., Schiffer, L., Manghi, P., Renson, A., Obenchain, V., Truong, D. T., Beghini, F., Malik, F., Ramos, M., Dowd, J. B., Huttenhower, C., Morgan, M., Segata, N., & Waldron, L. (2017). Accessible, curated metagenomic data through experimenthub. Nature Methods, 14(11), 1023-1024. https://doi.org/10.1038/nmeth.4468
[18]
Daubechies, I. (1992). Ten lectures on wavelets. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611970104
[19]
Roweis, S., & Hinton, G. (2002). Stochastic neighbor embedding. Neural Information Processing Systems, (January).
[20]
Van der Maaten, L., Hinton, G. Journal of Machine Learning Research, 9(86), 2579–2605. (2008). http://jmlr.org/papers/v9/vandermaaten08a.html
[21]
McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform manifold approximation and projection for dimension reduction. ArXiv. https://arxiv.org/abs/1802.03426v3

Cited By

View all
  • (2023)Prediction of Credit Defaults based on Weight Dimensionality Reduction Neural Network and M-Band Discrete Wavelet Transform Full Research Paper Acronym: CSCI-RTBD2023 International Conference on Computational Science and Computational Intelligence (CSCI)10.1109/CSCI62032.2023.00023(106-112)Online publication date: 13-Dec-2023

Index Terms

  1. Wavelet-Based Microbiome Correlations of Host Traits
                Index terms have been assigned to the content through auto-classification.

                Recommendations

                Comments

                Please enable JavaScript to view thecomments powered by Disqus.

                Information & Contributors

                Information

                Published In

                cover image ACM Other conferences
                ICCBB '22: Proceedings of the 2022 6th International Conference on Computational Biology and Bioinformatics
                December 2022
                87 pages
                ISBN:9781450397636
                DOI:10.1145/3589437
                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                Published: 20 July 2023

                Permissions

                Request permissions for this article.

                Check for updates

                Author Tags

                1. Discrete Wavelet Transform
                2. Host Trait Correlation Network
                3. Imputation
                4. Microbiome
                5. Regression
                6. Sparse Matrix

                Qualifiers

                • Research-article
                • Research
                • Refereed limited

                Conference

                ICCBB 2022

                Contributors

                Other Metrics

                Bibliometrics & Citations

                Bibliometrics

                Article Metrics

                • Downloads (Last 12 months)17
                • Downloads (Last 6 weeks)6
                Reflects downloads up to 01 Mar 2025

                Other Metrics

                Citations

                Cited By

                View all
                • (2023)Prediction of Credit Defaults based on Weight Dimensionality Reduction Neural Network and M-Band Discrete Wavelet Transform Full Research Paper Acronym: CSCI-RTBD2023 International Conference on Computational Science and Computational Intelligence (CSCI)10.1109/CSCI62032.2023.00023(106-112)Online publication date: 13-Dec-2023

                View Options

                Login options

                View options

                PDF

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader

                HTML Format

                View this article in HTML Format.

                HTML Format

                Figures

                Tables

                Media

                Share

                Share

                Share this Publication link

                Share on social media