[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3582016.3582022acmconferencesArticle/Chapter ViewAbstractPublication PagesasplosConference Proceedingsconference-collections
research-article
Public Access

Homunculus: Auto-Generating Efficient Data-Plane ML Pipelines for Datacenter Networks

Published: 25 March 2023 Publication History

Abstract

Support for Machine Learning (ML) applications in networking has significantly improved over the last decade. The availability of public datasets and programmable switching fabrics (including low-level languages to program them) presents a full-stack to the programmer for deploying in-network ML. However, the diversity of tools involved, coupled with complex optimization tasks of ML model design and hyperparameter tuning while complying with the network constraints (like throughput and latency), puts the onus on the network operator to be an expert in ML, network design, and programmable hardware.
We present Homunculus, a high-level framework that enables network operators to specify their ML requirements in a declarative rather than imperative way. Homunculus takes as input the training data and accompanying network and hardware constraints, and automatically generates and installs a suitable model onto the underlying switching target. It performs model design-space exploration, training, and platform code-generation as compiler stages, leaving network operators to focus on acquiring high-quality network data. Our evaluations on real-world ML applications show that Homunculus’s generated models achieve up to 12% better F1 scores compared to hand-tuned alternatives, while operating within the resource limits of the underlying targets. We further demonstrate the high performance and increased reactivity (seconds to nanoseconds) of the generated models on emerging per-packet ML platforms to showcase Homunculus’s timely and practical significance.

References

[1]
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In USENIX OSDI.
[2]
Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed Congestion-aware Load Balancing for Datacenters. In ACM SIGCOMM.
[3]
Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data Center TCP (DCTCP). In ACM SIGCOMM.
[4]
Sivaram Ambikasaran, Daniel Foreman-Mackey, Leslie Greengard, David W Hogg, and Michael O’Neil. 2015. Fast Direct Methods for Gaussian Processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 2 (2015), 252–265.
[5]
Nahla Ben Amor, Salem Benferhat, and Zied Elouedi. 2004. Naive Bayes vs Decision Trees in Intrusion Detection Systems. In ACM Symposium on Applied Computing (2004).
[6]
Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner: An Extensible Framework for Program Autotuning. In Proceedings of the 23rd International Conference on Parallel Architectures and Compilation. 303–316.
[7]
Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford, David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport Protocols in High-Speed NICs. In USENIX NSDI (2020).
[8]
Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: Constructing Hardware in a Scala Embedded Language. In DAC.
[9]
Jarrod Bakker, Bryan Ng, Winston K.G. Seah, and Adrian Pekar. 2019. Traffic Classification with Machine Learning in a Live Network. In IFIP/IEEE Symposium on Integrated Network and Service Management (IM).
[10]
Pierre Baldi and Peter J Sadowski. 2013. Understanding Dropout. Advances in Neural Information Processing Systems, 26 (2013), 2814–2822.
[11]
Diogo Barradas, Nuno Santos, Luís Rodrigues, Salvatore Signorello, Fernando M. V. Ramos, and André Madeira. 2021. FlowLens: Enabling Efficient Flow Classification for ML-based Network Security Applications. In NDSS.
[12]
Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic Characteristics of Data Centers in the Wild. In ACM IMC.
[13]
James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. 2010. Theano: A CPU and GPU Math Expression Compiler. In SciPy.
[14]
J. Bergstra, D. Yamins, and D. D. Cox. 2013. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In International Conference on Machine Learning.
[15]
Ekaba Bisong. 2019. Google AutoML: Cloud Vision. In Building Machine Learning and Deep Learning Models on Google Cloud Platform. Springer, 581–598.
[16]
Bruno Bodin, Luigi Nardi, M. Zeeshan Zia, Harry Wagstaff, Govind Sreekar Shenoy, Murali Emani, John Mawer, Christos Kotselidis, Andy Nisbet, Mikel Lujan, Björn Franke, Paul H.J. Kelly, and Michael O’Boyle. 2016. Integrating Algorithmic Parameters into Benchmarking and Design Space Exploration in 3D Scene Understanding. In ACM PACT.
[17]
Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. 2014. P4: Programming Protocol-independent Packet Processors. ACM SIGCOMM CCR.
[18]
Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis: Fast Programmable Match-Action Processing in Hardware for SDN. In ACM SIGCOMM.
[19]
Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam, Sara Ayoubi, Nashid Shahriar, Felipe Estrada-Solano, and Oscar M. Caicedo. 2018. A Comprehensive Survey on Machine Learning for Networking: Evolution, Applications and Research Opportunities. Journal of Internet Services and Applications.
[20]
Leo Breiman. 2001. Random Forests. Machine learning, 45, 1 (2001), 5–32.
[21]
Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A Cloud-scale Acceleration Architecture. In IEEE MICRO.
[22]
Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. AuTO: Scaling Deep Reinforcement Learning for Datacenter-scale Automatic Traffic Optimization. In ACM SIGCOMM.
[23]
François Chollet. 2018. Keras: The Python Deep Learning Library. Astrophysics Source Code Library.
[24]
Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Maleen Abeydeera, Logan Adams, Hari Angepat, Christian Boehn, Derek Chiou, Oren Firestein, Alessandro Forin, Kang Su Gatlin, Mahdi Ghandi, Stephen Heil, Kyle Holohan, Ahmad El Husseini, Tamas Juhasz, Kara Kagi, Ratna K. Kovvuri, Sitaram Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel, Brandon Perez, Amanda Rapsang, Steven Reinhardt, Bita Rouhani, Adam Sapek, Raja Seera, Sangeetha Shekar, Balaji Sridharan, Gabriel Weisz, Lisa Woods, Phillip Yi Xiao, Dan Zhang, Ritchie Zhao, and Doug Burger. 2018. Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. IEEE Micro.
[25]
Carla Currin, Toby Mitchell, Max Morris, and Don Ylvisaker. 1988. A Bayesian Approach to the Design and Analysis of Computer Experiments. Oak Ridge National Laboratory, TN (USA).
[26]
L Dhanabal and SP Shantharajah. 2015. A Study on NSL-KDD Dataset for Intrusion Detection System Based on Classification Algorithms. International Journal of Advanced Research in Computer and Communication Engineering, 4, 6 (2015), 446–452.
[27]
Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael Schapira. 2015. PCC: Re-Architecting Congestion Control for Consistent High Performance. In USENIX NSDI.
[28]
Adel Ejjeh, Vikram Adve, and Rob A Rutenbar. 2020. Studying the Potential of Automatic Optimizations in the Intel FPGA SDK for OpenCL. In ACM/SIGDA FPGA.
[29]
Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and Georg Carle. 2015. Moongen: A Scriptable High-speed Packet Generator. In ACM IMC.
[30]
Alice Este, Francesco Gringoli, and Luca Salgarelli. 2009. Support Vector Machines for TCP traffic classification. Computer Networks.
[31]
Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum, and Frank Hutter. 2019. Auto-sklearn: Efficient and Robust Automated Machine Learning. In Automated Machine Learning.
[32]
Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accelerated Networking: SmartNICs in the Public Cloud. In USENIX NSDI.
[33]
Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cunningham. 2014. Bayesian Optimization with Inequality Constraints. In ICML.
[34]
Michael A Gelbart, Jasper Snoek, and Ryan P Adams. 2014. Bayesian Optimization with Unknown Constraints. arXiv preprint arXiv:1403.5607.
[35]
Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum, and Amin Vahdat. 2019. SIMON: A Simple and Scalable Method for Sensing, Inference and Measurement in Data Center Networks. In USENIX NSDI.
[36]
Licheng Guo, Pongstorn Maidee, Yun Zhou, Chris Lavin, Jie Wang, Yuze Chi, Weikang Qiao, Alireza Kaviani, Zhiru Zhang, and Jason Cong. 2022. RapidStream: Parallel Physical Implementation of FPGA HLS Designs. In Proceedings of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 1–12.
[37]
Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-Friendly High-Speed TCP Variant. ACM SIGOPS Operating Systems Review.
[38]
B. Hariri and N. Sadati. 2007. NN-RED: An AQM Mechanism Based on Neural Networks. Electronics Letters, https://doi.org/10.1049/el:20071791
[39]
Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A Survey of the State-of-the-Art. Knowledge-Based Systems.
[40]
M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. 1998. Support vector machines. IEEE Intelligent Systems and their Applications.
[41]
Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2021. New Directions in Automated Traffic Analysis. In ACM SIGSAC CCS.
[42]
Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch, Yingnong Dang, Murali Chintalapati, and Randolph Yao. 2017. Gray Failure: The Achilles’ Heel of Cloud-Scale Systems. In HotOS.
[43]
Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated Machine Learning: Methods, Systems, Challenges. Springer Nature.
[44]
Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman. 2019. The P4->NetFPGA Workflow for Line-Rate Packet Processing. In ACM/SIGDA FPGA.
[45]
Intel. last accessed: 06/10/2022. Infrastructure Processing Unit (Intel IPU) and SmartNICs. https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
[46]
Intel. last accessed: 06/10/2022. Tofino: P4-programmable Ethernet Switch ASIC that Delivers Better Performance at Lower Power. https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
[47]
Intel. last accessed: 06/10/2022. Tofino2: Second-generation P4-programmable Ethernet Switch ASIC that Continues to Deliver Programmability without Compromise. https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
[48]
Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar. 2019. A Deep Reinforcement Learning Perspective on Internet Congestion Control. In ICML.
[49]
Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-Keras: An Efficient Neural Architecture Search System. In ACM SIGKDD.
[50]
Radhakrishna Kamath and Krishna M Sivalingam. 2021. Machine Learning Based Flow Classification in DCNs Using P4 Switches. In IEEE ICCCN.
[51]
Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer Rexford. 2016. HULA: Scalable Load Balancing Using Programmable Data Planes. In ACM SOSR.
[52]
Nicolas Knudde, Joachim van der Herten, Tom Dhaene, and Ivo Couckuyt. 2017. GPflowOpt: A Bayesian Optimization Library Using TensorFlow. arXiv preprint arXiv:1711.03845.
[53]
David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: A Language and Compiler for Application Accelerators. In ACM SIGPLAN PLDI.
[54]
Angelo Cardoso Lapolli, Jonatas Adilson Marques, and Luciano Paschoal Gaspary. 2019. Offloading Real-time DDoS Attack Detection to Programmable Data Planes. In IFIP/IEEE Symposium on Integrated Network and Service Management (IM).
[55]
Guanyu Li, Menghao Zhang, Shicheng Wang, Chang Liu, Mingwei Xu, Ang Chen, Hongxin Hu, Guofei Gu, Qi Li, and Jianping Wu. 2021. Enabling Performant, Flexible and Cost-Efficient DDoS Defense With Programmable Switches. IEEE/ACM Transactions on Networking.
[56]
Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019. HPCC: High Precision Congestion Control. In ACM SIGCOMM.
[57]
Yingqiu Liu, Wei Li, and Yunchun Li. 2007. Network Traffic Classification Using K-means Clustering. In IMSCCS.
[58]
Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating Volumetric DDoS Attacks with Programmable Switches. In USENIX Security.
[59]
Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016. Resource Management with Deep Reinforcement Learning. In ACM HotNets.
[60]
Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive Video Streaming with Pensieve. In ACM SIGCOMM.
[61]
Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad Alizadeh. 2019. Learning Scheduling Algorithms for Data Processing Clusters. In Proceedings of the ACM Special Interest Group on Data Communication.
[62]
Wes McKinney. 2011. pandas: A Foundational Python Library for Data Analysis and Statistics. Python for High Performance and Scientific Computing, 14, 9 (2011), 1–9.
[63]
Tahir Mehmood and Helmi B Md Rais. 2015. SVM for Network Anomaly Detection using ACO Feature Subset. In IEEE iSMSC.
[64]
Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. 1978. The Application of Bayesian Methods for Seeking the Extremum. Toward Global Optimization, 2, 117-129 (1978), 2.
[65]
John Moody. 1994. Prediction Risk and Architecture Selection for Neural Networks. In From Statistics to Neural Networks. Springer, 147–165.
[66]
Pratik Narang, Subhajit Ray, Chittaranjan Hota, and Venkat Venkatakrishnan. 2014. Peershark: Detecting Peer-to-Peer Botnets by Tracking Conversations. In IEEE Security and Privacy Workshop.
[67]
Luigi Nardi, Bruno Bodin, Sajad Saeedi, Emanuele Vespa, Andrew J Davison, and Paul HJ Kelly. 2017. Algorithmic Performance-accuracy Trade-off in 3D Vision Applications using Hypermapper. In IEEE IPDPSW.
[68]
Luigi Nardi, David Koeplinger, and Kunle Olukotun. 2019. Practical Design Space Exploration. In IEEE MASCOTS.
[69]
Nvidia. last accessed: 06/10/2022. Bluefield Data Processing Units (DPUs). https://www.nvidia.com/en-us/networking/products/data-processing-unit/
[70]
ONF. last accessed: 06/10/2022. ONOS: Open Network Operating System (ONOS). https://opennetworking.org/onos/
[71]
ONF. last accessed: 06/10/2022. Stratum: Enabling the era of next generation SDN. https://opennetworking.org/stratum/
[72]
Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. 2019. A Flexible Framework for Multi-Objective Bayesian Optimization using Random Scalarizations. In UAI.
[73]
Pascal Poupart, Zhitang Chen, Priyank Jaini, Fred Fung, Hengky Susanto, Yanhui Geng, Li Chen, Kai Chen, and Hao Jin. 2016. Online Flow Size Prediction for Improved Network Routing. In IEEE ICNP.
[74]
Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017. Plasticine: A Reconfigurable Architecture for Parallel Patterns. In ACM/IEEE ISCA.
[75]
Andrew Putnam. 2017. FPGAs in the Datacenter: Combining the Worlds of Hardware and Software Development. In GLSVLSI.
[76]
Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A Reconfigurable Fabric for Accelerating Large-scale Datacenter Services. In ACM/IEEE ISCA.
[77]
Babak Rahbarinia, Roberto Perdisci, Andrea Lanzi, and Kang Li. 2013. PeerRush: Mining for Unwanted P2P Traffic. In DIMVA.
[78]
Sajad Saeedi, Luigi Nardi, Edward Johns, Bruno Bodin, Paul HJ Kelly, and Andrew J Davison. 2017. Application-oriented Design Space Exploration for SLAM Algorithms. In IEEE ICRA.
[79]
Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. 2018. Can the Network Be the AI Accelerator? In ACM NetCompute.
[80]
Giuseppe Siracusano and Roberto Bifulco. 2018. In-network Neural Networks. arXiv preprint arXiv:1801.05731.
[81]
Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh, Gianni Antichi, Paolo Costa, Hamed Haddadi, and Roberto Bifulco. 2022. Re-architecting Traffic Analysis with Neural Network Interface Cards. In USENIX NSDI.
[82]
John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker. 2021. Lucid: A Language for Control in the Data Plane. In ACM SIGCOMM.
[83]
Le Song, Santosh Vempala, John Wilmes, and Bo Xie. 2017. On the Complexity of Learning Neural Networks. arXiv preprint arXiv:1707.04615.
[84]
Artur Souza, Luigi Nardi, Leonardo B Oliveira, Kunle Olukotun, Marius Lindauer, and Frank Hutter. 2021. Bayesian Optimization with a Prior for the Optimum. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases.
[85]
Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle Olukotun. 2022. Taurus: A Data Plane Architecture for per-Packet ML. In ACM ASPLOS.
[86]
Tuan A Tang, Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi, and Mounir Ghogho. 2016. Deep Learning Approach for Network Intrusion Detection in Software Defined Networking. In IEEE WINCOM.
[87]
Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. 2009. A Detailed Analysis of the KDD CUP 99 Dataset. In IEEE CISDA.
[88]
Lisa Torrey and Jude Shavlik. 2010. Transfer Learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. IGI global, 242–264.
[89]
Vojislav Ð ukić, Sangeetha Abdu Jyothi, Bojan Karlas, Muhsen Owaida, Ce Zhang, and Ankit Singla. 2019. Is Advance Knowledge of Flow Sizes a Plausible Assumption? In USENIX NSDI.
[90]
Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A Survey of Transfer Learning. Journal of Big data, 3, 1 (2016), 1–40.
[91]
Keith Winstein and Hari Balakrishnan. 2013. TCP ex machina: Computer-generated Congestion Control. In ACM SIGCOMM CCR.
[92]
Yuanlong Xiao, Eric Micallef, Andrew Butt, Matthew Hofmann, Marc Alston, Matthew Goldsmith, Andrew Merczynski-Hait, and André DeHon. 2022. PLD: Fast FPGA Compilation to Make Reconfigurable Acceleration Compatible with Modern Incremental Refinement Software Development. In ACM ASPLOS.
[93]
Xilinx. last accessed: 06/10/2022. Alveo U250 Data Center Accelerator Card. https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
[94]
Xilinx. last accessed: 06/10/2022. Running Multiple Implementation Strategies for Timing Closure. https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Running-Multiple-Implementation-Strategies-for-Timing-Closure
[95]
Xilinx. last accessed: 06/10/2022. UltraScale+ Integrated 100G Ethernet Subsystem. https://www.xilinx.com/products/intellectual-property/cmac_usplus.html
[96]
Xilinx. last accessed: 06/10/2022. Vivado. https://www.xilinx.com/products/design-tools/vivado.html
[97]
Zhaoqi Xiong and Noa Zilberman. 2019. Do Switches Dream of Machine Learning? Toward In-network Classification. In ACM HotNets.
[98]
Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: A Randomized Experiment in Video Streaming. In USENIX NSDI.
[99]
Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby, Philip Levis, and Keith Winstein. 2018. Pantheon: The Training Ground for Internet Congestion-Control Research. In USENIX ATC.
[100]
Siyu Yan, Xiaoliang Wang, Xiaolong Zheng, Yinben Xia, Derui Liu, and Weishan Deng. 2021. ACC: Automatic ECN Tuning for High-Speed Datacenter Networks. In ACM SIGCOMM.
[101]
Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive Programmable Switches. In ACM SIGCOMM.
[102]
Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-Resolution Measurement of Data Center Microbursts. In ACM IMC.
[103]
Yaqi Zhang, Nathan Zhang, Tian Zhao, Matt Vilim, Muhammad Shahbaz, and Kunle Olukotun. 2021. SARA: Scaling a Reconfigurable Dataflow Accelerator. In ACM/IEEE ISCA.
[104]
Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments. In ACM SIGCOMM.
[105]
Lucas Zimmer, Marius Lindauer, and Frank Hutter. 2021. Auto-Pytorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Cited By

View all
  • (2024)Planter: Rapid Prototyping of In-Network Machine Learning InferenceACM SIGCOMM Computer Communication Review10.1145/3687230.368723254:1(2-21)Online publication date: 6-Aug-2024
  • (2024)A Machine Learning-Based Toolbox for P4 Programmable Data-PlanesIEEE Transactions on Network and Service Management10.1109/TNSM.2024.340207421:4(4450-4465)Online publication date: Aug-2024
  • (2024)IIsy: Hybrid In-Network Classification Using Programmable SwitchesIEEE/ACM Transactions on Networking10.1109/TNET.2024.336475732:3(2555-2570)Online publication date: Jun-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ASPLOS 2023: Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3
March 2023
820 pages
ISBN:9781450399180
DOI:10.1145/3582016
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 March 2023

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. ML Compilers
  2. Per-packet ML
  3. Self-driving Networks

Qualifiers

  • Research-article

Funding Sources

Conference

ASPLOS '23

Acceptance Rates

Overall Acceptance Rate 535 of 2,713 submissions, 20%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)443
  • Downloads (Last 6 weeks)28
Reflects downloads up to 16 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Planter: Rapid Prototyping of In-Network Machine Learning InferenceACM SIGCOMM Computer Communication Review10.1145/3687230.368723254:1(2-21)Online publication date: 6-Aug-2024
  • (2024)A Machine Learning-Based Toolbox for P4 Programmable Data-PlanesIEEE Transactions on Network and Service Management10.1109/TNSM.2024.340207421:4(4450-4465)Online publication date: Aug-2024
  • (2024)IIsy: Hybrid In-Network Classification Using Programmable SwitchesIEEE/ACM Transactions on Networking10.1109/TNET.2024.336475732:3(2555-2570)Online publication date: Jun-2024
  • (2024)Efficient Orchestrated AI Workflows Execution on Scale-Out Spatial ArchitectureIEEE Transactions on Circuits and Systems for Artificial Intelligence10.1109/TCASAI.2024.34762371:2(229-243)Online publication date: Dec-2024
  • (2024)Generating P4 Dataplanes Using LLMs2024 IEEE 25th International Conference on High Performance Switching and Routing (HPSR)10.1109/HPSR62440.2024.10635926(31-36)Online publication date: 22-Jul-2024
  • (2024)In-Network Machine Learning Using Programmable Network Devices: A SurveyIEEE Communications Surveys & Tutorials10.1109/COMST.2023.334435126:2(1171-1200)Online publication date: Oct-2025
  • (2023)Designing Traffic Monitoring Systems for Self-Driving NetworksACM SIGMETRICS Performance Evaluation Review10.1145/3626570.362660251:2(85-87)Online publication date: 2-Oct-2023
  • (2023)NeuroLPM - Scaling Longest Prefix Match Hardware with Neural Networks56th Annual IEEE/ACM International Symposium on Microarchitecture10.1145/3613424.3623769(886-899)Online publication date: 8-Dec-2023
  • (2023)Multa: Enabling Cost-efficient Multi-task Network Traffic AnalysisGLOBECOM 2023 - 2023 IEEE Global Communications Conference10.1109/GLOBECOM54140.2023.10437133(6225-6230)Online publication date: 4-Dec-2023

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media