[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3581784.3607032acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

GRAPHINE: Enhanced Neutral Atom Quantum Computing using Application-Specific Rydberg Atom Arrangement

Published: 11 November 2023 Publication History

Abstract

Multiple technologies for realizing quantum computing are currently under development. Neutral atom quantum computing is one such promising technology; it offers advantages such as the ability to perform long-distance interactions and gates consisting of more than two qubits. A particular advantage it provides is the flexibility to arrange the qubits in different topologies by customizing atom layouts. We design Graphine, which, to the best of our knowledge, is the first technique to leverage this flexibility to design application-specific topologies for different quantum algorithms based on the structural characteristics of the algorithm circuits. This enables Graphine to improve key performance metrics like the number of gates and pulses by up to 56% and the probability of error by up to 42% on average over widely-used topology designs.

Supplemental Material

MP4 File - SC23 paper presentation recording for "GRAPHINE: Enhanced Neutral Atom Quantum Computing using Application-Specific Rydberg Atom Arrangement"
SC23 paper presentation recording for "GRAPHINE: Enhanced Neutral Atom Quantum Computing using Application-Specific Rydberg Atom Arrangement", by: Tirthak Patel, Daniel Silver, Devesh Tiwari

References

[1]
C S Adams, J D Pritchard, and J P Shaffer. 2019. Rydberg Atom Quantum Technologies. (July 2019). arXiv:1907.09231 [physics.atom-ph]
[2]
Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Córcoles-Gonzales, Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente González, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques, Francisco Jose Martín-Fernández, Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda Rodríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James O'Riordan, Hanhee Paik, Jesús Pérez, Anna Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Raymond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and Christa Zoufal. 2019. Qiskit: An Open-source Framework for Quantum Computing.
[3]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. 2019. Quantum Supremacy using a Programmable Superconducting Processor. Nature 574, 7779 (2019), 505--510.
[4]
Jonathan M Baker, Andrew Litteken, Casey Duckering, Henry Hoffmann, Hannes Bernien, and Frederic T Chong. 2021. Exploiting Long-Distance Interactions and Tolerating Atom Loss in Neutral Atom Quantum Architectures. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). 818--831.
[5]
Daniel Barredo, Vincent Lienhard, Sylvain de Léséleuc, Thierry Lahaye, and Antoine Browaeys. 2018. Synthetic Three-Dimensional Atomic Structures Assembled Atom by Atom. Nature 561, 7721 (Sept. 2018), 79--82.
[6]
Lindsay Bassman, Connor Powers, and Wibe A de Jong. 2021. ArQTiC: A Full-Stack Software Package for Simulating Materials on Quantum Computers. arXiv preprint arXiv:2106.04749 (2021).
[7]
Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, et al. 2022. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 7906 (2022), 451--456.
[8]
Sergey Bravyi, David Gosset, and Robert König. 2018. Quantum Advantage with Shallow Circuits. Science 362, 6412 (2018), 308--311.
[9]
Steven A Cuccaro, Thomas G Draper, Samuel A Kutin, and David Petrie Moulton. 2004. A New Quantum Ripple-Carry Addition Circuit. arXiv preprint quant-ph/0410184 (2004).
[10]
Edward Farhi and Aram W Harrow. 2016. Quantum Supremacy through the Quantum Approximate Optimization Algorithm. arXiv preprint arXiv:1602.07674 (2016).
[11]
Michael Fleischhauer and Mikhail D Lukin. 2002. Quantum Memory for Photons: Dark-State Polaritons. Physical Review A 65, 2 (2002), 022314.
[12]
Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T Chong. 2020. Optimized Quantum Compilation for Near-Term Algorithms with OpenPulse. arXiv preprint arXiv:2004.11205 (2020).
[13]
T M Graham, M Kwon, B Grinkemeyer, Z Marra, X Jiang, M T Lichtman, Y Sun, M Ebert, and M Saffman. 2019. Rydberg-Mediated Entanglement in a Two-Dim. Neutral Atom Qubit Array. Phys. Rev. Lett. 123, 23 (Dec. 2019), 230501.
[14]
Lov K Grover. 1998. Quantum Computers can Search Rapidly by using Almost any Transformation. Physical Review Letters 80, 19 (1998), 4329.
[15]
Andrew Hancock, Austin Garcia, Jacob Shedenhelm, Jordan Cowen, and Calista Carey. 2019. Cirq: A Python Framework for Creating, Editing, and Invoking Quantum Circuits. URL https://github.com/quantumlib/Cirq (2019).
[16]
Loic Henriet, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys, Georges-Olivier Reymond, and Christophe Jurczak. 2020. Quantum Computing with Neutral Atoms. (June 2020). arXiv:2006.12326 [quant-ph]
[17]
Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2016. SciPy: Open Source Scientific Tools for Python, 2001.
[18]
Peter Komar, Pedro Lopes, and Stefan Natu. 2022. Amazon Braket launches Aquila, the First Neutral-Atom Quantum Processor from QuEra Computing. https://aws.amazon.com/blogs/quantum-computing/amazon-braket-launches-aquila-the-first-neutral-atom-quantum-processor-from-quera-computing/
[19]
Henning Labuhn, Daniel Barredo, Sylvain Ravets, Sylvain De Léséleuc, Tommaso Macrì, Thierry Lahaye, and Antoine Browaeys. 2016. Tunable Two-Dimensional Arrays of Single Rydberg Atoms for Realizing Quantum Ising Models. Nature 534, 7609 (2016), 667--670.
[20]
Harry Levine, Alexander Keesling, Ahmed Omran, Hannes Bernien, Sylvain Schwartz, Alexander S Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D Lukin. 2018. High-Fidelity Control and Entanglement of Rydberg-Atom Qubits. Phys. Rev. Lett. 121, 12 (Sept. 2018), 123603.
[21]
Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Tout T Wang, Sepehr Ebadi, Hannes Bernien, Markus Greiner, Vladan Vuletić, Hannes Pichler, and Mikhail D Lukin. 2019. Parallel Implementation of High-Fidelity Multi-Qubit Gates with Neutral Atoms. (Aug. 2019). arXiv:1908.06101 [quant-ph]
[22]
Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 1001--1014.
[23]
Victor Namias. 1980. The Fractional order Fourier Transform and its Application to Quantum Mechanics. IMA Journal of Applied Mathematics 25, 3 (1980), 241--265.
[24]
Paul Nation, Hanhee Paik, Andrew Cross, and Zaira Nazario. 2021. The IBM Quantum Heavy Hex Lattice. https://research.ibm.com/blog/heavy-hex-lattice Accessed: 2021-11-22.
[25]
Minh-Thi Nguyen, Jin-Guo Liu, Jonathan Wurtz, Mikhail D Lukin, Sheng-Tao Wang, and Hannes Pichler. 2023. Quantum optimization with arbitrary connectivity using rydberg atom Arrays. PRX Quantum 4, 1 (2023), 010316.
[26]
Florence Nogrette, Henning Labuhn, Sylvain Ravets, Daniel Barredo, Lucas Béguin, Aline Vernier, Thierry Lahaye, and Antoine Browaeys. 2014. Single-Atom Trapping in Holographic 2D Arrays of Microtraps with Arbitrary Geometries. Physical Review X 4, 2 (2014), 021034.
[27]
Tirthak Patel, Baolin Li, Rohan Basu Roy, and Devesh Tiwari. 2020. UREQA: Leveraging Operation-Aware Error Rates for Effective Quantum Circuit Mapping on NISQ-Era Quantum Computers. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). 705--711.
[28]
Tirthak Patel, Daniel Silver, and Devesh Tiwari. 2022. GEYSER: A Compilation Framework for Quantum Computing with Neutral Atoms. In 2022 ACM/IEEE 49th Annual International Symposium on Computer Architecture (ISCA).
[29]
Tirthak Patel and Devesh Tiwari. 2021. QRAFT: Reverse your Quantum Circuit and Know the Correct Program Output. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 443--455.
[30]
Tirthak Patel, Ed Younis, Costin Iancu, Wibe de Jong, and Devesh Tiwari. 2022. QUEST: Systematically Approximating Quantum Circuits for Higher Output Fidelity. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 514--528.
[31]
Gerard Pelegrí, Andrew J Daley, and Jonathan D Pritchard. 2021. High-Fidelity Multiqubit Rydberg Gates via Two-Photon Adiabatic Rapid Passage. arXiv preprint arXiv:2112.13025 (2021).
[32]
C J Picken, R Legaie, K McDonnell, and J D Pritchard. 2018. Entanglement of Neutral-atom Qubits with Long Ground-Rydberg Coherence Times. Quantum Sci. Technol. 4, 1 (Dec. 2018), 015011.
[33]
John Preskill. 2021. Quantum computing 40 years later. arXiv preprint arXiv:2106.10522 (2021).
[34]
M Saffman, II Beterov, A Dalal, EJ Páez, and BC Sanders. 2020. Symmetric Rydberg Controlled-Z Gates with Adiabatic Pulses. Physical Review A 101, 6 (2020), 062309.
[35]
Kemal H Sahin and Amy R Ciric. 1998. A Dual Temperature Simulated Annealing Approach for Solving Bilevel Programming Problems. Computers & chemical engineering 23, 1 (1998), 11--25.
[36]
N Šibalić, J D Pritchard, C S Adams, and K J Weatherill. 2016. ARC: An Open-Source Library for Calculating Properties of Alkali Rydberg Atoms. (Dec. 2016). arXiv:1612.05529 [physics.atom-ph]
[37]
Kaitlin N Smith, Gokul Subramanian Ravi, Jonathan M Baker, and Frederic T Chong. 2022. Scaling Superconducting Quantum Computers with Chiplet Architectures. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 1092--1109.
[38]
Samuel A Stein, Betis Baheri, Daniel Chen, Ying Mao, Qiang Guan, Ang Li, Shuai Xu, and Caiwen Ding. 2022. QuClassi: A Hybrid Deep Neural Network Architecture based on Quantum State Fidelity. Proceedings of Machine Learning and Systems 4 (2022).
[39]
Juexiao Su, Tianheng Tu, and Lei He. 2016. A Quantum Annealing Approach for Boolean Satisfiability Problem. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 1--6.
[40]
Swamit S Tannu and Moinuddin Qureshi. 2019. Ensemble of Diverse Mappings: Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mistakes. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 253--265.
[41]
T Xia, M Lichtman, K Maller, A W Carr, M J Piotrowicz, L Isenhower, and M Saffman. 2015. Randomized Benchmarking of Single-qubit Gates in a 2D Array of Neutral-atom Qubits. Phys. Rev. Lett. 114, 10 (March 2015), 100503.
[42]
Alwin Zulehner and Robert Wille. 2019. Compiling SU (4) Quantum Circuits to IBM QX Architectures. In Proceedings of the 24th Asia and South Pacific Design Automation Conference. ACM, 185--190.

Cited By

View all
  • (2024)Modeling and Simulating Rydberg Atom Quantum Computers for Hardware-Software Co-design with PachinQoProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/37004218:3(1-25)Online publication date: 10-Dec-2024

Index Terms

  1. GRAPHINE: Enhanced Neutral Atom Quantum Computing using Application-Specific Rydberg Atom Arrangement

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SC '23: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
    November 2023
    1428 pages
    ISBN:9798400701092
    DOI:10.1145/3581784
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 November 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Badges

    Author Tags

    1. quantum computing
    2. NISQ computing
    3. neutral atoms
    4. rydberg atoms
    5. quantum compiling
    6. quantum software

    Qualifiers

    • Research-article

    Conference

    SC '23
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)288
    • Downloads (Last 6 weeks)40
    Reflects downloads up to 11 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Modeling and Simulating Rydberg Atom Quantum Computers for Hardware-Software Co-design with PachinQoProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/37004218:3(1-25)Online publication date: 10-Dec-2024

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media