[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3573834.3574494acmotherconferencesArticle/Chapter ViewAbstractPublication PagesaissConference Proceedingsconference-collections
research-article

A Beamspace-Based Sparse Estimation Method for Array Signal

Published: 17 January 2023 Publication History

Abstract

In this paper, the problem of direction of arrival (DOA) estimation with sparse methods for array processing is concerned with the observation domain aspect, and an estimation method named beamspace-based sparse (BSE) is proposed. In BSE method, the beam space energy of the array signal is observed and modeled as the weighted sum of the signal energy of each azimuth beam pattern sequences of the conventional beamforming (CBF). BSE constructs a solution architecture for joint -norm minimization and quadratic constraint linear programming (QCLP) of noise power. Based on the estimation of noise background power under Gaussian noise conditions, a parameter selection method is derived, which can be quickly solved by the convex programming method. BSE has higher azimuth resolution and a lower false alarm rate when compared to sparse estimation methods based on other observation domains. It also performs well in coherent environments.

References

[1]
Baraniuk R. G. 2007. Compressive Sensing [Lecture Notes]. IEEE Signal Processing Magazine Vol. 4. 118-121. http://doi.org/10.1109/MSP.2007.4286571.
[2]
Liu C, Y. V. Zakharov and T Chen. 2012. Broadband Underwater Localization of Multiple Sources Using Basis Pursuit De-Noising. IEEE Transactions on Signal Processing Vol. 4. 1708-1717. http://doi.org/10.1109/TSP.2011.2181506.
[3]
Pazos S., M. Hurtado and C. Muravchik. 2015. On Sparse Methods for Array Signal Processing in the Presence of Interference. IEEE Antennas & Wireless Propagation Letters Vol. 1165-1168. http://doi.org/10.1109/LAWP.2015.2394233.
[4]
Zhang-Meng, Liu, Zhi-Tao, Huang, Yi-Yu and Zhou. 2013. Sparsity-Inducing Direction Finding for Narrowband and Wideband Signals Based on Array Covariance Vectors. Wireless Communications Vol. 8. 1-12. http://doi.org/10.1109/TWC.2013.071113.121305.
[5]
Das A. and T. J. Sejnowski. 2018. Narrowband and Wideband Off-Grid Direction-of-Arrival Estimation via Sparse Bayesian Learning. IEEE Journal of Oceanic Engineering Vol. 108-118. http://doi.org/10.1109/JOE.2017.2660278.
[6]
Tropp and A. J. 2004. Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory Vol. 10. 2231-2242. http://doi.org/10.1109/TIT.2004.834793.
[7]
Joel A. Tropp, Anna C. Gilbert. 2007. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit, IEEE Trans.Inf.Theory, Vol.53, No.12, 2007. http://doi.org/10.1109/TIT.2007.909108
[8]
Dai W. and O. Milenkovic. 2009. Subspace Pursuit for Compressive Sensing Signal Reconstruction. IEEE Transactions on Information Theory Vol. 5. http://doi.org/10.1109/TIT.2009.2016006.
[9]
Chen S. S. and Dma Saunders. 2001. Atomic Decomposition by Basis Pursuit. SIAM Review Vol. 1. 129-159. http://doi.org/10.2307/3649687.
[10]
Bruckstein A. M., D. L. Donoho and M. Elad. 2009. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images. SIAM Review Vol. 1. págs. 34-81. http://doi.org/10.1137/060657704.
[11]
Candes E. J. and T. Tao. 2005. Decoding by linear programming. IEEE Transactions on Information Theory Vol. 12. 4203-4215. http://doi.org/10.1109/TIT.2005.858979.
[12]
Devi M. R., N. S. Kumar and J. Joseph 2016. Sparse reconstruction based direction of arrival estimation of underwater targets. 2015 International Symposium on Ocean Electronics (SYMPOL), Kochi, India, IEEE, http://doi.org/10.1109/SYMPOL.2015.7581175.
[13]
Shapo B. and C. Kreucher 2009. Basis Pursuit for robust passive acoustic beamforming. 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, http://doi.org/10.1109/ACSSC.2009.5469865.
[14]
Gorodnitsky I. F. and B. D. Rao. 2002. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing Vol. 3. 600-616. http://doi.org/10.1109/78.558475.
[15]
Rao B. D., K. Engan, S. F. Cotter, J. Palmer and K. Kreutz-Delgado. 2003. Subset selection in noise based on diversity measure minimization. IEEE Transactions on Signal Processing Vol. 3. 760-770. http://doi.org/10.1109/TSP.2002.808076.
[16]
Malioutov D., M. Cetin and A. S. Willsky. 2005. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing Vol. 8. 3010-3022. http://doi.org/10.1109/TSP.2005.850882.
[17]
Nan H., Z. Ye, D. Xu and S. Cao. 2012. A sparse recovery algorithm for DOA estimation using weighted subspace fitting. Signal Processing Vol. 10. 2566-2570. http://doi.org/10.1016/j.sigpro.2012.03.020.
[18]
Xu X., X. Wei and Z. Ye. 2012. DOA Estimation Based on Sparse Signal Recovery Utilizing Weighted l. IEEE Signal Processing Letters Vol. 3. 155-158. http://doi.org/10.1109/LSP.2012.2183592.
[19]
Koul A., G. V. Anand, S. Gurugopinath and K. Nathwani 2020. Three-Dimensional Underwater Acoustic Source Localization by Sparse Signal Reconstruction Techniques. 2020 International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, IEEE, http://doi.org/10.1109/SPCOM50965.2020.9179579.
[20]
Xu F., A. Liu, S. Mo and S. Li. 2021. DOA Estimation Method Using Sparse Representation with Orthogonal Projection. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY Vol. 4. 397-402. http://doi.org/10.15918/j.jbit.1004-0579.2021.062.
[21]
Yin J. and T. Chen. 2011. Direction-of-Arrival Estimation Using a Sparse Representation of Array Covariance Vectors. IEEE Transactions on Signal Processing Vol. 9. 4489-4493. http://doi.org/10.1109/TSP.2011.2158425.
[22]
Stoica P., P. Babu and J. Li. 2011. SPICE: A Sparse Covariance-Based Estimation Method for Array Processing. IEEE Transactions on Signal Processing Vol. 2. 629-638. http://doi.org/10.1109/TSP.2010.2090525.
[23]
Yang Z. and L. Xie. 2016. Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization. IEEE Transactions on Signal Processing Vol. 4. 995-1006. http://doi.org/10.1109/TSP.2015.2493987.
[24]
Qi C., G. Zhang and J. Yuan. 2020. Gridless DOA Estimation for Minimum-Redundancy Linear Array in Nonuniform Noise. Mathematical Problems in Engineering Vol. 6. 1-8. http://doi.org/10.1155/2020/1580391.
[25]
Sedighi S., Mrb Shankar, M. Soltanalian and B. Ottersten 2020. On the Performance of One-Bit DoA Estimation via Sparse Linear Arrays. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 6165-6182. http://doi.org/10.1109/TSP.2021.3122290.
[26]
Wang G., M. He, C. Yu, J. Han and C. X. Chen. 2021. Fast Underdetermined DOA Estimation Based on Generalized MRA via Original Covariance Vector Sparse Reconstruction. IEEE Access Vol. 99. 1-1. http://doi.org/10.1109/ACCESS.2021.3077080.
[27]
Wang G., Y. He, K. Liu, C. Chen and Y. Jiang 2021. Sparsity-Based Underdetermined DOA Estimator via Toeplitz Matrix Reconstruction for Sparse Array. 2021 IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, IEEE, http://doi.org/10.1109/ICET51757.2021.9450925.
[28]
Fuchs and J.-J. 2001. On the application of the global matched filter to DOA estimation with uniform circular arrays. IEEE Transactions on Signal Processing Vol. 4. 702-709. http://doi.org/10.1109/78.912914.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
AISS '22: Proceedings of the 4th International Conference on Advanced Information Science and System
November 2022
396 pages
ISBN:9781450397933
DOI:10.1145/3573834
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 January 2023

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Array signal
  2. Beamspace-based sparse
  3. Direction of arrival estimation
  4. Sparse methods

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

AISS 2022

Acceptance Rates

Overall Acceptance Rate 41 of 95 submissions, 43%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 26
    Total Downloads
  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)1
Reflects downloads up to 30 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media