[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3573105.3575672acmconferencesArticle/Chapter ViewAbstractPublication PagespoplConference Proceedingsconference-collections
research-article
Open access

A First Complete Algorithm for Real Quantifier Elimination in Isabelle/HOL

Published: 11 January 2023 Publication History

Abstract

We formalize a multivariate quantifier elimination (QE) algorithm in the theorem prover Isabelle/HOL. Our algorithm is complete, in that it is able to reduce any quantified formula in the first-order logic of real arithmetic to a logically equivalent quantifier-free formula. The algorithm we formalize is a hybrid mixture of Tarski’s original QE algorithm and the Ben-Or, Kozen, and Reif algorithm, and it is the first complete multivariate QE algorithm formalized in Isabelle/HOL.

References

[1]
Saugata Basu, Richard Pollack, and Marie-Françoise Roy. 2006. Algorithms in Real Algebraic Geometry (second ed.). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33099-2
[2]
Michael Ben-Or, Dexter Kozen, and John H. Reif. 1986. The Complexity of Elementary Algebra and Geometry. J. Comput. Syst. Sci., 32, 2 (1986), 251–264. https://doi.org/10.1016/0022-0000(86)90029-2
[3]
Christopher W. Brown. 2001. Improved Projection for Cylindrical Algebraic Decomposition. J. Symb. Comput., 32, 5 (2001), 447–465. https://doi.org/10.1006/jsco.2001.0463
[4]
Christopher W. Brown. 2003. QEPCAD B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bull., 37, 4 (2003), 97–108. https://doi.org/10.1145/968708.968710
[5]
John F. Canny. 1993. Improved Algorithms for Sign Determination and Existential Quantifier Elimination. Comput. J., 36, 5 (1993), 409–418. https://doi.org/10.1093/comjnl/36.5.409
[6]
Cyril Cohen. 2012. Formalized algebraic numbers: construction and first-order theory. Ph. D. Dissertation. École polytechnique. https://perso.crans.org/cohen/papers/thesis.pdf
[7]
Cyril Cohen. 2021. Formalization of a sign determination algorithm in real algebraic geometry. Preprint on webpage at https://hal.inria.fr/hal-03274013/document
[8]
Cyril Cohen and Assia Mahboubi. 2012. Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination. Log. Methods Comput. Sci., 8, 1 (2012), https://doi.org/10.2168/LMCS-8(1:2)2012
[9]
George E. Collins. 1975. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In Automata Theory and Formal Languages, H. Barkhage (Ed.) (LNCS, Vol. 33). Springer, 134–183. https://doi.org/10.1007/3-540-07407-4_17
[10]
George E. Collins and H. Hong. 1991. Partial Cylindrical Algebraic Decomposition for Quantifier Elimination. J. Symb. Comput., 12, 3 (1991), 299–328. https://doi.org/10.1016/S0747-7171(08)80152-6
[11]
Katherine Cordwell, Yong Kiam Tan, and André Platzer. 2021. The BKR Decision Procedure for Univariate Real Arithmetic. Archive of Formal Proofs, April, https://www.isa-afp.org/entries/BenOr_Kozen_Reif.html
[12]
Katherine Cordwell, Yong Kiam Tan, and André Platzer. 2021. A Verified Decision Procedure for Univariate Real Arithmetic with the BKR Algorithm. In ITP, Liron Cohen and Cezary Kaliszyk (Eds.) (LIPIcs, Vol. 193). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 14:1–14:20. https://doi.org/10.4230/LIPIcs.ITP.2021.14
[13]
Felipe Cucker, Hervé Lanneau, Bud Mishra, Paul Pedersen, and Marie-Françoise Roy. 1992. NC Algorithms for Real Algebraic Numbers. Appl. Algebra Eng. Commun. Comput., 3 (1992), 79–98. https://doi.org/10.1007/BF01387193
[14]
James H. Davenport and Joos Heintz. 1988. Real Quantifier Elimination is Doubly Exponential. J. Symb. Comput., 5, 1/2 (1988), 29–35. https://doi.org/10.1016/S0747-7171(88)80004-X
[15]
Leonardo Mendonça de Moura and Grant Olney Passmore. 2013. Computation in Real Closed Infinitesimal and Transcendental Extensions of the Rationals. In CADE, Maria Paola Bonacina (Ed.) (LNCS, Vol. 7898). Springer, 178–192. https://doi.org/10.1007/978-3-642-38574-2_12
[16]
Andreas Dolzmann, Andreas Seidl, and Thomas Sturm. 2004. Efficient projection orders for CAD. In ISSAC, Jaime Gutierrez (Ed.). ACM, 111–118. https://doi.org/10.1145/1005285.1005303
[17]
Manuel Eberl. 2015. A Decision Procedure for Univariate Real Polynomials in Isabelle/HOL. In CPP, Xavier Leroy and Alwen Tiu (Eds.). ACM, 75–83. https://doi.org/10.1145/2676724.2693166
[18]
Manuel Eberl and René Thiemann. 2021. Factorization of Polynomials with Algebraic Coefficients. Archive of Formal Proofs, November, issn:2150-914x https://isa-afp.org/entries/Factor_Algebraic_Polynomial.html
[19]
John Harrison. 2007. Verifying Nonlinear Real Formulas Via Sums of Squares. In TPHOLs, Klaus Schneider and Jens Brandt (Eds.) (LNCS, Vol. 4732). Springer, 102–118. https://doi.org/10.1007/978-3-540-74591-4_9
[20]
Joos Heintz, Marie-Françoise Roy, and Pablo Solernó. 1993. On the Theoretical and Practical Complexity of the Existential Theory of Reals. Comput. J., 36, 5 (1993), 427–431. https://doi.org/10.1093/comjnl/36.5.427
[21]
Hoon Hong. 1991. Comparison of Several Decision Algorithms for the Existential Theory of the Reals. RISC. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.8707
[22]
Lars Hupel and Tobias Nipkow. 2018. A Verified Compiler from Isabelle/HOL to CakeML. In ESOP, Amal Ahmed (Ed.) (LNCS, Vol. 10801). Springer, 999–1026. https://doi.org/10.1007/978-3-319-89884-1_35
[23]
Katherine Kosaian, Yong Kiam Tan, and André Platzer. 2022. A First Complete Algorithm for Real Quantifier Elimination in Isabelle/HOL. Archive of Formal Proofs, Dec., https://www.isa-afp.org/entries/Quantifier_Elimination_Hybrid.html
[24]
Wenda Li. 2014. The Sturm-Tarski Theorem. Archive of Formal Proofs, Sept., issn:2150-914x https://isa-afp.org/entries/Sturm_Tarski.html
[25]
Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. 2019. Deciding Univariate Polynomial Problems Using Untrusted Certificates in Isabelle/HOL. J. Autom. Reason., 62, 1 (2019), 69–91. https://doi.org/10.1007/s10817-017-9424-6
[26]
Wenda Li and Lawrence C. Paulson. 2016. A modular, efficient formalisation of real algebraic numbers. In CPP, Jeremy Avigad and Adam Chlipala (Eds.). ACM, 66–75. https://doi.org/10.1145/2854065.2854074
[27]
Assia Mahboubi. 2007. Implementing the cylindrical algebraic decomposition within the Coq system. Math. Struct. Comput. Sci., 17, 1 (2007), 99–127. https://doi.org/10.1017/S096012950600586X
[28]
Scott McCallum. 1985. An Improved Projection Operation for Cylindrical Algebraic Decomposition. In EUROCAL, B. F. Caviness (Ed.) (LNCS, Vol. 204). Springer, 277–278. https://doi.org/10.1007/3-540-15984-3_277
[29]
Sean McLaughlin and John Harrison. 2005. A Proof-Producing Decision Procedure for Real Arithmetic. In CADE, Robert Nieuwenhuis (Ed.) (LNCS, Vol. 3632). Springer, 295–314. https://doi.org/10.1007/11532231_22
[30]
César A. Muñoz, Anthony J. Narkawicz, and Aaron Dutle. 2018. A Decision Procedure for Univariate Polynomial Systems Based on Root Counting and Interval Subdivision. J. Formaliz. Reason., 11, 1 (2018), 19–41. https://doi.org/10.6092/issn.1972-5787/8212
[31]
Anthony Narkawicz, César A. Muñoz, and Aaron Dutle. 2015. Formally-Verified Decision Procedures for Univariate Polynomial Computation Based on Sturm’s and Tarski’s Theorems. J. Autom. Reason., 54, 4 (2015), 285–326. https://doi.org/10.1007/s10817-015-9320-x
[32]
Tobias Nipkow. 2010. Linear Quantifier Elimination. J. Autom. Reason., 45, 2 (2010), 189–212. https://doi.org/10.1007/s10817-010-9183-0
[33]
Lawrence C. Paulson and Jasmin Christian Blanchette. 2010. Three years of experience with Sledgehammer, a Practical Link Between Automatic and Interactive Theorem Provers. In IWIL, Geoff Sutcliffe, Stephan Schulz, and Eugenia Ternovska (Eds.) (EPiC Series in Computing, Vol. 2). EasyChair, 1–11.
[34]
André Platzer. 2018. Logical Foundations of Cyber-Physical Systems. Springer, Cham. isbn:978-3-319-63587-3 https://doi.org/10.1007/978-3-319-63588-0
[35]
André Platzer, Jan-David Quesel, and Philipp Rümmer. 2009. Real World Verification. In CADE, Renate A. Schmidt (Ed.) (LNCS, Vol. 5663). Springer, 485–501. https://doi.org/10.1007/978-3-642-02959-2_35
[36]
James Renegar. 1992. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination. J. Symb. Comput., 13, 3 (1992), 329–352. https://doi.org/10.1016/S0747-7171(10)80005-7
[37]
Matias Scharager, Katherine Cordwell, Stefan Mitsch, and André Platzer. 2021. Verified Quadratic Virtual Substitution for Real Arithmetic. In FM, Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan (Eds.) (LNCS, Vol. 13047). Springer, 200–217. https://doi.org/10.1007/978-3-030-90870-6_11
[38]
Matias Scharager, Katherine Cordwell, Stefan Mitsch, and André Platzer. 2021. Verified Quadratic Virtual Substitution for Real Arithmetic. Archive of Formal Proofs, October, issn:2150-914x https://isa-afp.org/entries/Virtual_Substitution.html
[39]
Adam Strzeboński. 2000. Solving algebraic inequalities. The Mathematica Journal, 7, 4 (2000), 525–541.
[40]
Alfred Tarski. 1951. A Decision Method for Elementary Algebra and Geometry. RAND Corporation, Santa Monica, CA. https://www.rand.org/pubs/reports/R109.html
[41]
Volker Weispfenning. 1988. The Complexity of Linear Problems in Fields. J. Symb. Comput., 5, 1-2 (1988), 3–27. https://doi.org/10.1016/S0747-7171(88)80003-8
[42]
Makarius Wenzel. 2006. Structured Induction Proofs in Isabelle/Isar. In MKM, Jonathan M. Borwein and William M. Farmer (Eds.) (LNCS, Vol. 4108). Springer, 17–30. https://doi.org/10.1007/11812289_3

Cited By

View all

Index Terms

  1. A First Complete Algorithm for Real Quantifier Elimination in Isabelle/HOL

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CPP 2023: Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs
    January 2023
    347 pages
    ISBN:9798400700262
    DOI:10.1145/3573105
    This work is licensed under a Creative Commons Attribution 4.0 International License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 January 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. multivariate polynomials
    2. quantifier elimination
    3. real arithmetic
    4. theorem proving

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    CPP '23
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 18 of 26 submissions, 69%

    Upcoming Conference

    POPL '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)103
    • Downloads (Last 6 weeks)19
    Reflects downloads up to 31 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media