[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3561613.3561633acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicccvConference Proceedingsconference-collections
research-article

Research on Classroom Interaction Behavior Analysis Algorithm based on Audio and Video

Published: 09 November 2022 Publication History

Abstract

Classroom interaction behavior research is an important part of classroom teaching quality evaluation, which can effectively improve teaching quality. Traditional classroom interaction behavior research is mainly carried out in the form of expert lectures and student questionnaires. This method can neither make the best use of the large amount of data generated in the classroom scene, nor can it provide an objective and detailed evaluation of the teaching quality. However, in the context of educational informatization, using information technology to observe and analyze classroom interaction can make full use of teaching data and provide timely and objective feedback on the teaching situation. This paper focuses on the analysis of classroom interaction behavior in colleges and universities. In order to make full use of classroom audio and video data, a framework for classroom interaction behavior analysis based on audio and video is constructed. It divides classroom interaction behaviors into verbal and non-verbal categories, and uses deep learning technology to realize automated classroom interaction analysis. The main work and innovations are as follows: (1) Combined with the theoretical basis of traditional classroom interaction analysis and the requirements of efficient classrooms for classroom quality evaluation, this paper constructs an audio-video-based classroom interaction behavior analysis framework. (2) The speaker segmentation and clustering algorithm in the verbal classroom interaction behavior analysis task is improved, and a frame feature extraction network integrating LSTM and TDNN and a temporal pooling network based on the dual multi-head attention mechanism are proposed. Compared with the DIHARD III baseline network, the improved speaker segmentation clustering algorithm reduces the speaker separation error rate (DER) by 3.24%, 3.19%, 4.53% and 4.14%, respectively, on the four types of evaluation datasets. (3) For the face detection algorithm in the non-verbal classroom interactive behavior analysis task, a single-stage face detection network FDN is proposed, and a bidirectional feature fusion module FPN+PANet, a prediction branch IoU- aware and a loss function CIoU are designed. Compared with RetinaFace, the final FDN has the most obvious improvement, and the average precision (Average Precision, AP) on the verification and test set difficult targets has increased by 2.6% and 2.7%, respectively.

References

[1]
Guo Chunsheng, Zhang Xuguang, and Ying Na. Interactive Teaching Design and Practice in Information Theory Classroom. Modern Education, 44:066, 2019.Sam Anzaroot and Andrew McCallum. 2013. UMass Citation Field Extraction Dataset. Retrieved May 27, 2019 from http://www.iesl.cs.umass.edu/data/data-umasscitationfield
[2]
Tao Yibei. Construction of classroom teaching quality evaluation system based on big data. Science and Technology Vision, 31:124–125, 2021
[3]
Fitri Mardiana, Zainuddin Zainuddin, and Johannes Jefria Gultom. Verbal interaction in English classroom using flanders interaction analysis categories system (fiacs). GENRE, 7(3):126–132, 2019.
[4]
Cao Peijie. The triple realm of artificial intelligence education reform. Educational Research, 2:143–150, 2
[5]
Sun Zhong, Lv Kaiyue, and Shi Zhiping. Testii framework: The development trend of AI-supported classroom teaching analysis. Research, 2:33–39, 2
[6]
Zehui Zhan, Qianyi Wu, Zhihua Lin, and Jiayi Cai. Smart classroom environments affect teacher-student interaction: Evidence from a behavioural sequence analysis. Australasian Journal of Educational Technology, 37(2):96–109, 2021.
[7]
Jiaxin Lin, Jiamin Li, and Jie Chen. An analysis of english classroom behavior by intelli gent image recognition in iot. International Journal of System Assurance Engineering and Management, (1):1–9, 2021.
[8]
Neville Ryant, Prachi Singh, Venkat Krishnamohan, Rajat Varma, Kenneth Church, Christo pher Cieri, Jun Du, Sriram Ganapathy, and Mark Liberman. The third dihard diarization challenge. arXiv preprint arXiv:2012.01477, 2020.
[9]
Neville Ryant, Prachi Singh, Venkat Krishnamohan, Rajat Varma, Kenneth Church, Christo pher Cieri, Jun Du, Sriram Ganapathy, and Mark Liberman. The third dihard diarization challenge. arXiv preprint arXiv:2012.01477, 2020.
[10]
Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and Dongwei Ren. Distance iou loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 12993–13000, 2020.
[11]
Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Stefanos Zafeiriou. Retinaface: Single-shot multi-level face localisation in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5203–5212, 2020.

Index Terms

  1. Research on Classroom Interaction Behavior Analysis Algorithm based on Audio and Video

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICCCV '22: Proceedings of the 5th International Conference on Control and Computer Vision
    August 2022
    241 pages
    ISBN:9781450397315
    DOI:10.1145/3561613
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 09 November 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. classroom interaction
    2. face detection
    3. human stance detection
    4. speaker segmentation and clustering

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    ICCCV 2022

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 70
      Total Downloads
    • Downloads (Last 12 months)24
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 19 Dec 2024

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media