[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3557995.3566116acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Microscopic modeling of spatiotemporal epidemic dynamics

Published: 01 November 2022 Publication History

Abstract

Conventional techniques of epidemic modeling are based on compartmental models, where population groups are transitioning from one compartment to another - for example, S, I, or R, (Susceptible, Infectious, or Recovered). Then, they focus on learning macroscopic properties of disease spreading, such as the transition rates between compartments. Although these models are useful in studying epidemic dynamics, they lack the granularity needed for analyzing individual behaviors during an epidemic and understanding the relationship between individual decisions and the spread of the disease. In this paper, we develop microscopic models of spatiotemporal epidemic dynamics informed by mobility patterns of individuals and their interactions. In contrast to macroscopic models, microscopic epidemic models focus on individuals and their properties, such as their activity level, mobility behaviors, and impact of mobility behavior changes. Our microscopic spatiotemporal epidemic model allows to: (i) assess the risk of infection of an individual based on mobility patterns; (ii) assess the risk of infection associated with specific geographic areas and points-of-interest (POIs); (iii) assess the risk of infection of a trip in an urban environment; (iv) provide trip recommendation for mitigating the risk of infection; and (v) assess targeted intervention strategies that aim to control the epidemic spreading. Our work provides an evidence-based data-driven model to inform individuals about the infection risks associated with their mobility behavior during a pandemic, providing at the same time safer alternatives. It can also inform public policy about the effectiveness of targeted intervention strategies that aim to contain or mitigate the epidemic spread compared to horizontal measures.

References

[1]
A. Aleta, D. Martin-Corral, A. P. y Piontti, M. Ajelli, M. Litvinova, M. Chinazzi, N. E. Dean, M. E. Halloran, I. M. Longini Jr, S. Merler, et al. Modeling the impact of social distancing, testing, contact tracing and household quarantine on second-wave scenarios of the COVID-19 epidemic. medRxiv (2020).
[2]
G. Alix, N. Yanin, T. Pechlivanoglou, J. Li, F. Heidari, and M. Papagelis. 2022. A Mobility-based Recommendation System for Mitigating the Risk of Infection during Epidemics. In 23rd IEEE Intl. Conf. on Mobile Data Management (MDM).
[3]
H. Alsdurf, Y. Bengio, T. Deleu, P. Gupta, D. Ippolito, R. Janda, M. Jarvie, T. Kolody, S. Krastev, T. Maharaj, et al. COVI White Paper. arXiv:2005.08502 (2020).
[4]
C. Anastasiou, C. Costa, P. K. Chrysanthis, C. Shahabi, and D. Zeinalipour-Yazti. ASTRO: Reducing COVID-19 Exposure through Contact Prediction and Avoidance. 8, 2, Article 11 (Dec 2022).
[5]
R. M. Anderson, B. Anderson, and R. M. May. 1992. Infectious diseases of humans: dynamics and control. Oxford University Press.
[6]
G. Atluri, A. Karpatne, and V. Kumar. Spatio-temporal data mining: A survey of problems and methods. ACM Computing Surveys (CSUR) 51, 4 (2018), 1--41.
[7]
S. Baize, D. Pannetier, L. Oestereich, T. Rieger, L. Koivogui, N. Magassouba, B. Soropogui, M. S. Sow, S. Keïta, H. De Clerck, et al. Emergence of Zaire Ebola virus disease in Guinea. New England Journal of Medicine 371, 15 (2014), 1418--1425.
[8]
C. P. Birch, S. P. Oom, and J. A. Beecham. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecological modelling 206, 3-4 (2007), 347--359.
[9]
P. Block, M. Hoffman, I. J. Raabe, J. B. Dowd, C. Rahal, R. Kashyap, and M. C. Mills. Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nature Human Behaviour (2020), 1--9.
[10]
F. Brauer, C. Castillo-Chavez, and C. Castillo-Chavez. 2012. Mathematical models in population biology and epidemiology. Vol. 2. Springer.
[11]
D. Butler. Swine flu goes global: New influenza virus tests pandemic emergency preparedness. Nature 458, 7242 (2009), 1082--1084.
[12]
G. S. Campos, A. C. Bandeira, and S. I. Sardi. Zika virus outbreak, bahia, brazil. Emerging infectious diseases 21, 10 (2015), 1885.
[13]
G. Cantin, C. Silva, and A. Banos. Mathematical analysis of a hybrid model: Impacts of individual behaviors on the spreading of an epidemic. Networks & Heterogeneous Media (2022).
[14]
G. Cencetti, G. Santin, A. Longa, E. Pigani, A. Barrat, C. Cattuto, S. Lehmann, M. Salathe, and B. Lepri. Digital Proximity Tracing in the COVID-19 Pandemic on Empirical Contact Networks. medRxiv (2020).
[15]
J. Chan, S. Gollakota, E. Horvitz, J. Jaeger, S. Kakade, T. Kohno, J. Langford, J. Larson, S. Singanamalla, J. Sunshine, et al. Pact: Privacy sensitive protocols and mechanisms for mobile contact tracing. arXiv:2004.03544 (2020).
[16]
S. Changruenngam, D. J. Bicout, and C. Modchang. How the individual human mobility spatio-temporally shapes the disease transmission dynamics. Scientific Reports 10, 1 (2020), 1--13.
[17]
H. Cho, D. Ippolito, and Y. W. Yu. Contact tracing mobile apps for COVID-19: Privacy considerations and related trade-offs. arXiv:2003.11511 (2020).
[18]
F. W. Crawford, S. A. Jones, M. Cartter, S. G. Dean, J. L. Warren, Z. R. Li, J. Barbieri, J. Campbell, P. Kenney, T. Valleau, and O. Morozova. Impact of close interpersonal contact on COVID-19 incidence: Evidence from 1 year of mobile device data. Science Advances 8, 1 (2022).
[19]
Z. Cui, M. Cai, Y. Xiao, Z. Zhu, M. Yang, and G. Chen. Forecasting the transmission trends of respiratory infectious diseases with an exposure-risk-based model at the microscopic level. Environmental Research (2022).
[20]
M. Debnath, P. K. Tripathi, A. K. Biswas, and R. Elmasri. 2018. Preference aware travel route recommendation with temporal influence. In Proc. of the 2nd ACM SIGSPATIAL/LBSN Workshop. 1--9.
[21]
S. Dodge, R. Weibel, and E. Forootan. Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects. Computers, Environment and Urban Systems 33, 6 (2009), 419--34.
[22]
K. T. Eames and M. J. Keeling. Contact tracing and disease control. Proc. of the Royal Society of London. Series B: Biological Sciences 270, 1533 (2003), 2565--71.
[23]
D. J. Earn, P. Rohani, B. M. Bolker, and B. T. Grenfell. A simple model for complex dynamical transitions in epidemics. Science 287, 5453 (2000), 667--670.
[24]
C. Fan, R. Lee, Y. Yang, and A. Mostafavi. Fine-grained data reveal segregated mobility networks and opportunities for local containment of COVID-19. Scientific Reports 11, 1 (2021), 1--6.
[25]
K. Farrahi, R. Emonet, and M. Cebrian. Epidemic contact tracing via communication traces. PloS one 9, 5 (2014), e95133.
[26]
L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, M. Parker, D. Bonsall, and C. Fraser. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368, 6491 (2020).
[27]
C. P. K. Fotsing, Y.-W. Teng, G.-S. Lee, C.-Y. Shen, Y.-S. Chen, and D.-N. Yang. 2022. On Epidemic-aware Socio Spatial POI Recommendation. In 23rd IEEE Intl. Conf. on Mobile Data Management (MDM).
[28]
H. Frisch and J. Hammersley. Percolation processes and related topics. Journal of the society for industrial and applied mathematics 11, 4 (1963), 894--918.
[29]
V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. Grand, S. K. Heinz, G. Huse, et al. A standard protocol for describing individual-based and agent-based models. Ecological modelling 198, 1-2 (2006), 115--126.
[30]
J. N. Hays. 2005. Epidemics and pandemics: their impacts on human history. Abc-clio.
[31]
L. Hébert-Dufresne, B. M. Althouse, S. V. Scarpino, and A. Allard. Beyond R0: Heterogeneity in secondary infections and probabilistic epidemic forecasting. medRxiv (2020).
[32]
H. W. Hethcote. The mathematics of infectious diseases. SIAM review 42, 4 (2000), 599--653.
[33]
N. Hoertel, M. Blachier, C. Blanco, M. Olfson, M. Massetti, F. Limosin, and H. Leleu. Facing the COVID-19 epidemic in NYC: a stochastic agent-based model of various intervention strategies. medRxiv (2020).
[34]
M. J. Keeling and B. T. Grenfell. Individual-based perspectives on R0. Journal of theoretical biology 203, 1 (2000), 51--61.
[35]
W. Kim, H. Lee, and Y. D. Chung. Safe contact tracing for COVID-19: A method without privacy breach using functional encryption techniques based-on spatio-temporal trajectory data. PLOS ONE 15 (Dec 2020), 1--12.
[36]
J.-G. Lee, J. Han, and K.-Y. Whang. 2007. Trajectory clustering. In Proc. of the 2007 ACM SIGMOD Intl. Conf. on Management of Data - SIGMOD07.
[37]
C. Liu. 2020. A Microscopic Epidemic Model and Pandemic Prediction Using Multi-Agent Reinforcement Learning.
[38]
J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, and W. M. Getz. Superspreading and the effect of individual variation on disease emergence. Nature 438, 7066 (2005), 355--359.
[39]
S. Manikandan. Measures of dispersion. Journal of Pharmacology & Pharmacotherapeautics 2, 4 (2011), 315.
[40]
L. Miralles-Pechuán, F. Jiménez, H. Ponce, and L. Martínez-Villaseñor. 2020. A methodology based on deep q-learning/genetic algorithms for optimizing covid-19 pandemic government actions. In Proc. of the 29th ACM Intl. Conf. on Information & Knowledge Management. 1135--1144.
[41]
M. F. Mokbel, S. Abbar, and R. Stanojevic. Contact Tracing: Beyond the Apps. arXiv:2006.04585 (2020).
[42]
D. M. Morens and A. S. Fauci. The 1918 influenza pandemic: insights for the 21st century. The Journal of infectious diseases 195, 7 (2007), 1018--1028.
[43]
W. H. Organization et al. Coronavirus disease 2019 (COVID-19): situation report, 72. WHO situation reports (2020).
[44]
W. H. Organization, C. for Disease Control, Prevention, et al. 2015. Implementation and management of contact tracing for Ebola virus disease: emergency guideline. Technical Report. World Health Organization.
[45]
M. J. Papagrigorakis, C. Yapijakis, P. N. Synodinos, and E. Baziotopoulou-Valavani. DNA examination of ancient dental pulp incriminates typhoid fever as a probable cause of the Plague of Athens. Intl. Journal of Infectious Diseases 10, 3 (2006), 206--214.
[46]
T. Pechlivanoglou, J. Li, J. Sun, F. Heidari, and M. Papagelis. Epidemic Spreading in Trajectory Networks. Big Data Research 27 (2022).
[47]
T. Pechlivanoglou and M. Papagelis. 2018. Fast and Accurate Mining of Node Importance in Trajectory Networks. In 2018 IEEE Intl. Conf. on Big Data (Big Data). 781--790.
[48]
J. S. Peiris, K. Y. Yuen, A. D. Osterhaus, and K. Stöhr. The severe acute respiratory syndrome. New England Journal of Medicine 349, 25 (2003), 2431--41.
[49]
L. Perez and S. Dragicevic. An agent-based approach for modeling dynamics of contagious disease spread. Intl. journal of health geographics 8, 1 (2009), 50.
[50]
T. Qian, B. Liu, Q. V. H. Nguyen, and H. Yin. Spatiotemporal Representation Learning for Translation-Based POI Recommendation. 37, 2 (Jan 2019).
[51]
L. Reichert, S. Brack, and B. Scheuermann. Privacy-Preserving Contact Tracing of COVID-19 Patients. IACR Cryptol. ePrint Arch. 2020 (2020), 375.
[52]
A. Sawas, A. Abuolaim, M. Afifi, and M. Papagelis. 2018. Tensor methods for group pattern discovery of pedestrian trajectories. In 19th IEEE Intl. Conf. on Mobile Data Management (MDM). 76--85.
[53]
A. Sawas, A. Abuolaim, M. Afifi, and M. Papagelis. 2018. Trajectolizer: Interactive analysis and exploration of trajectory group dynamics. In 2018 19th IEEE Intl. Conf. on Mobile Data Management (MDM). IEEE, 286--287.
[54]
A. Sawas, A. Abuolaim, M. Afifi, and M. Papagelis. A versatile computational framework for group pattern mining of pedestrian trajectories. GeoInformatica 23, 4 (2019), 501--531.
[55]
K. Toohey and M. Duckham. Trajectory similarity measures. SIGSPATIAL Special 7, 1 (2015), 43--50.
[56]
C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E. Bugnion, W. Lueks, T. Stadler, A. Pyrgelis, D. Antonioli, et al. Decentralized privacy-preserving proximity tracing. arXiv:2005.12273 (2020).
[57]
A. R. Tuite, D. N. Fisman, and A. L. Greer. Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada. CMAJ 192, 19 (2020), E497--E505.
[58]
S. Wang, J. Cao, and P. Yu. Deep learning for spatio-temporal data mining: A survey. IEEE Transactions on Knowledge and Data Engineering (2020).
[59]
J. S. Weitz, S. J. Beckett, A. R. Coenen, D. Demory, M. Dominguez-Mirazo, J. Dushoff, C.-Y. Leung, G. Li, A. Măgălie, S. W. Park, et al. Modeling shield immunity to reduce COVID-19 epidemic spread. Nature medicine (2020), 1--6.
[60]
S. Woodhams. 2020. COVID-19 Digital Rights Tracker.
[61]
D. Yao and R. Durrett. Epidemics on Evolving Graphs. arXiv:2003.08534 (2020).
[62]
Y. Zheng. Trajectory data mining: an overview. ACM Transactions on Intelligent Systems and Technology (TIST) 6, 3 (2015), 1--41.
[63]
A. Zumla, D. S. Hui, and S. Perlman. Middle East respiratory syndrome. The Lancet 386, 9997 (2015), 995--1007.

Cited By

View all
  • (2023)SpatialEpi'2022 Workshop Report: The 3rd ACM SIGSPATIAL International Workshop on Spatial Computing for EpidemiologySIGSPATIAL Special10.1145/3632268.363227714:1(28-31)Online publication date: 7-Nov-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SpatialEpi '22: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Spatial Computing for Epidemiology
November 2022
50 pages
ISBN:9781450395434
DOI:10.1145/3557995
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 November 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. COVID-19
  2. epidemic modeling
  3. individual variability
  4. mobility

Qualifiers

  • Research-article

Funding Sources

  • Natural Sciences and Engineering Research Council of Canada (NSERC)
  • NSERC

Conference

SIGSPATIAL '22
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)23
  • Downloads (Last 6 weeks)5
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)SpatialEpi'2022 Workshop Report: The 3rd ACM SIGSPATIAL International Workshop on Spatial Computing for EpidemiologySIGSPATIAL Special10.1145/3632268.363227714:1(28-31)Online publication date: 7-Nov-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media