[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3550469.3555387acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article
Public Access

Fast Editing of Singularities in Field-Aligned Stripe Patterns

Published: 30 November 2022 Publication History

Abstract

Field-aligned parametrization is a method that maps a scalar function onto a surface, such that the gradient vector of the scalar function matches the input vector field. Using this idea, one can produce a stripe pattern that is convenient for various purposes such as remeshing, texture synthesis, and computational fabrication. In the final outcome, the positions of singularities (i.e., bifurcations of the stripe pattern) are essential for functionalities, manufacturability, or aesthetics. In this paper, we propose an algorithm to allow users to interactively edit the singularity positions of field-aligned stripe patterns. The algorithm computes a stripe pattern from a prescribed set of singularities, without generating any unwanted singularities. The solution of the algorithm is formulated as the global minima of a constrained quadratic optimization, whose computation speed is dominated by solving only two sparse linear systems. Furthermore, once the two matrices in the two linear systems are factorized, any update on singularity positions operates in linear time. We showcase several applications feasible with our fast yet simple algorithm.

Supplemental Material

MP4 File
presentation
MP4 File
Supplementary video
PDF File
Appendix

References

[1]
David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt. 2013. Integer-Grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4, Article 98 (July 2013), 12 pages. https://doi.org/10.1145/2461912.2462014
[2]
David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-Integer Quadrangulation. ACM Trans. Graph. 28, 3, Article 77 (July 2009), 10 pages. https://doi.org/10.1145/1531326.1531383
[3]
David Bommes, Henrik Zimmer, and Leif Kobbelt. 2010. Practical Mixed-Integer Optimization for Geometry Processing. In Proceedings of the 7th International Conference on Curves and Surfaces (Avignon, France). Springer-Verlag, Berlin, Heidelberg, 193–206. https://doi.org/10.1007/978-3-642-27413-8_12
[4]
Marcel Campen, David Bommes, and Leif Kobbelt. 2015. Quantized Global Parametrization. ACM Trans. Graph. 34, 6, Article 192 (oct 2015), 12 pages. https://doi.org/10.1145/2816795.2818140
[5]
Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013. Digital Geometry Processing with Discrete Exterior Calculus. In ACM SIGGRAPH 2013 Courses (Anaheim, California) (SIGGRAPH ’13). Association for Computing Machinery, New York, NY, USA, Article 7, 126 pages. https://doi.org/10.1145/2504435.2504442
[6]
Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial Connections on Discrete Surfaces. Computer Graphics Forum 29, 5 (2010), 1525–1533. https://doi.org/10.1111/j.1467-8659.2010.01761.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01761.x
[7]
Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Integrable PolyVector Fields. ACM Trans. Graph. 34, 4, Article 38 (July 2015), 12 pages. https://doi.org/10.1145/2766906
[8]
Hans-Christian Ebke, Patrick Schmidt, Marcel Campen, and Leif Kobbelt. 2016. Interactively Controlled Quad Remeshing of High Resolution 3D Models. ACM Trans. Graph. 35, 6, Article 218 (nov 2016), 13 pages. https://doi.org/10.1145/2980179.2982413
[9]
David Eppstein. 2002. Dynamic Generators of Topologically Embedded Graphs. arxiv:cs/0207082 [cs.DS]
[10]
Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. 2007. Design of Tangent Vector Fields. ACM Trans. Graph. 26, 3 (July 2007), 56–es. https://doi.org/10.1145/1276377.1276447
[11]
Gaël Guennebaud, Benoît Jacob, 2010. Eigen v3. http://eigen.tuxfamily.org.
[12]
Yijiang Huang, Juyong Zhang, Xin Hu, Guoxian Song, Zhongyuan Liu, Lei Yu, and Ligang Liu. 2016. FrameFab: Robotic Fabrication of Frame Shapes. ACM Trans. Graph. 35, 6, Article 224 (nov 2016), 11 pages. https://doi.org/10.1145/2980179.2982401
[13]
Alec Jacobson, Daniele Panozzo, 2018. libigl: A simple C++ geometry processing library. https://libigl.github.io/.
[14]
Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant Field-Aligned Meshes. ACM Trans. Graph. 34, 6, Article 189 (Oct. 2015), 15 pages. https://doi.org/10.1145/2816795.2818078
[15]
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally Optimal Direction Fields. ACM Trans. Graph. 32, 4, Article 59 (July 2013), 10 pages. https://doi.org/10.1145/2461912.2462005
[16]
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe Patterns on Surfaces. ACM Trans. Graph. 34, 4, Article 39 (July 2015), 11 pages. https://doi.org/10.1145/2767000
[17]
Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. QuadCover - Surface Parameterization using Branched Coverings. Computer Graphics Forum 26, 3 (2007), 375–384. https://doi.org/10.1111/j.1467-8659.2007.01060.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2007.01060.x
[18]
Nils Lichtenberg, Noeska Smit, Christian Hansen, and Kai Lawonn. 2018. Real-time field aligned stripe patterns. Computers & Graphics 74(2018), 137–149. https://doi.org/10.1016/j.cag.2018.04.008
[19]
Yang Liu, Weiwei Xu, Jun Wang, Lifeng Zhu, Baining Guo, Falai Chen, and Guoping Wang. 2011. General Planar Quadrilateral Mesh Design Using Conjugate Direction Field. ACM Trans. Graph. 30, 6 (dec 2011), 1–10. https://doi.org/10.1145/2070781.2024174
[20]
Max Lyon, Marcel Campen, David Bommes, and Leif Kobbelt. 2019. Parametrization Quantization with Free Boundaries for Trimmed Quad Meshing. ACM Trans. Graph. 38, 4, Article 51 (jul 2019), 14 pages. https://doi.org/10.1145/3306346.3323019
[21]
Z. Ma, A. Walzer, C. Schumacher, R. Rust, F. Gramazio, M. Kohler, and M. Bächer. 2020. Designing Robotically-Constructed Metal Frame Structures. Computer Graphics Forum 39, 2 (2020), 411–422. https://doi.org/10.1111/cgf.13940 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13940
[22]
Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfisterer, François Guimbretière, and Patrick Baudisch. 2014. WirePrint: 3D Printed Previews for Fast Prototyping. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (Honolulu, Hawaii, USA) (UIST ’14). Association for Computing Machinery, New York, NY, USA, 273–280. https://doi.org/10.1145/2642918.2647359
[23]
Georges Nader, Yu Han Quek, Pei Zhi Chia, Oliver Weeger, and Sai-Kit Yeung. 2021. KnitKit: A Flexible System for Machine Knitting of Customizable Textiles. ACM Trans. Graph. 40, 4, Article 64 (jul 2021), 16 pages. https://doi.org/10.1145/3450626.3459790
[24]
Julian Panetta, Florin Isvoranu, Tian Chen, Emmanuel Siéfert, Benoît Roman, and Mark Pauly. 2021. Computational Inverse Design of Surface-Based Inflatables. ACM Trans. Graph. 40, 4, Article 40 (July 2021), 14 pages. https://doi.org/10.1145/3450626.3459789
[25]
Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4 (Oct. 2006), 1460–1485. https://doi.org/10.1145/1183287.1183297
[26]
Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. 2008. N-Symmetry Direction Field Design. ACM Trans. Graph. 27, 2, Article 10 (May 2008), 13 pages. https://doi.org/10.1145/1356682.1356683
[27]
Alvin C. Rencher and William F. Christensen. 2012. Methods of Multivariate Analysis (Wiley Series in Probability and Statistics). Wiley. 800 pages. https://lead.to/amazon/jp/?op=bt&la=ja&key=0470178965
[28]
Andrew O. Sageman-Furnas, Albert Chern, Mirela Ben-Chen, and Amir Vaxman. 2019. Chebyshev Nets from Commuting PolyVector Fields. ACM Trans. Graph. 38, 6, Article 172 (Nov. 2019), 16 pages. https://doi.org/10.1145/3355089.3356564
[29]
Christian Schüller, Roi Poranne, and Olga Sorkine-Hornung. 2018. Shape Representation by Zippables. ACM Trans. Graph. 37, 4, Article 78 (July 2018), 13 pages. https://doi.org/10.1145/3197517.3201347
[30]
Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. 2006. Designing Quadrangulations with Discrete Harmonic Forms. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing (Cagliari, Sardinia, Italy) (SGP ’06). Eurographics Association, Goslar, DEU, 201–210.
[31]
Amir Vaxman, Marcel Campen, Olga Diamanti, David Bommes, Klaus Hildebrandt, Mirela Ben-Chen Technion, and Daniele Panozzo. 2017. Directional Field Synthesis, Design, and Processing. In ACM SIGGRAPH 2017 Courses (Los Angeles, California) (SIGGRAPH ’17). Association for Computing Machinery, New York, NY, USA, Article 12, 30 pages. https://doi.org/10.1145/3084873.3084921
[32]
Josh Vekhter, Jiacheng Zhuo, Luisa F Gil Fandino, Qixing Huang, and Etienne Vouga. 2019. Weaving Geodesic Foliations. ACM Trans. Graph. 38, 4, Article 34 (July 2019), 22 pages. https://doi.org/10.1145/3306346.3323043
[33]
Rundong Wu, Huaishu Peng, François Guimbretière, and Steve Marschner. 2016. Printing Arbitrary Meshes with a 5DOF Wireframe Printer. ACM Trans. Graph. 35, 4, Article 101 (jul 2016), 9 pages. https://doi.org/10.1145/2897824.2925966

Cited By

View all
  • (2023)Orientable Dense Cyclic Infill for Anisotropic Appearance FabricationACM Transactions on Graphics10.1145/359241242:4(1-13)Online publication date: 26-Jul-2023
  • (2023)Quad Mesh Quantization Without a T‐MeshComputer Graphics Forum10.1111/cgf.1492843:1Online publication date: 17-Sep-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SA '22: SIGGRAPH Asia 2022 Conference Papers
November 2022
482 pages
ISBN:9781450394703
DOI:10.1145/3550469
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 November 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computational fabrication
  2. discrete differential geometry
  3. field-aligned parametrization
  4. geometry processing
  5. surface parametrization

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Data Availability

Funding Sources

Conference

SA '22
Sponsor:
SA '22: SIGGRAPH Asia 2022
December 6 - 9, 2022
Daegu, Republic of Korea

Acceptance Rates

Overall Acceptance Rate 178 of 869 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)270
  • Downloads (Last 6 weeks)43
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Orientable Dense Cyclic Infill for Anisotropic Appearance FabricationACM Transactions on Graphics10.1145/359241242:4(1-13)Online publication date: 26-Jul-2023
  • (2023)Quad Mesh Quantization Without a T‐MeshComputer Graphics Forum10.1111/cgf.1492843:1Online publication date: 17-Sep-2023

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media