[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3546037.3546060acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
poster

P4Pir: in-network analysis for smart IoT gateways

Published: 25 October 2022 Publication History

Abstract

IoT gateways are vital to the scalability and security of IoT networks. As more devices connect to the network, traditional hard-coded gateways fail to flexibly process diverse IoT traffic from highly dynamic devices. This calls for a more advanced analysis solution. In this work, we present P4Pir, an in-network traffic analysis solution for IoT gateways. It utilizes programmable data planes for in-band traffic learning with self-driven machine learning model updates. Preliminary results show that P4Pir can accurately detect emerging attacks based on retraining and updating the machine learning model.

References

[1]
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 265--283.
[2]
Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. 2014. P4: Programming Protocol-Independent Packet Processors. SIGCOMM Comput. Commun. Rev. 44, 3 (jul 2014), 87--95.
[3]
Coralie Busse-Grawitz, Roland Meier, Alexander Dietmüller, Tobias Bühler, and Laurent Vanbever. 2019. pForest: In-network inference with random forests. arXiv (2019). arXiv:1909.05680
[4]
Mojtaba Eskandari, Zaffar Haider Janjua, Massimo Vecchio, and Fabio Antonelli. 2020. Passban IDS: An Intelligent Anomaly-Based Intrusion Detection System for IoT Edge Devices. IEEE Internet of Things Journal 7, 8 (2020), 6882--6897.
[5]
Yong Feng, Zhikang Chen, Haoyu Song, Wenquan Xu, Jiahao Li, Zijian Zhang, Tong Yun, Ying Wan, and Bin Liu. 2022. Enabling In-situ Programmability in Network Data Plane: From Architecture to Language. In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22). 635--649.
[6]
Mohamed Amine Ferrag, Othmane Friha, Djallel Hamouda, Leandros Maglaras, and Helge Janicke. 2022. Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications: Centralized and Federated Learning.
[7]
Ibbad Hafeez, Markku Antikainen, Aaron Yi Ding, and Sasu Tarkoma. 2020. IoT-KEEPER: Detecting malicious IoT network activity using online traffic analysis at the edge. IEEE Transactions on Network and Service Management 17, 1 (2020).
[8]
Roberto Jordaney, Kumar Sharad, Santanu K. Dash, Zhi Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting Concept Drift in Malware Classification Models. In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association, 625--642.
[9]
Tran Viet Khoa, Yuris Mulya Saputra, Dinh Thai Hoang, Nguyen Linh Trung, Diep Nguyen, Nguyen Viet Ha, and Eryk Dutkiewicz. 2020. Collaborative learning model for cyberattack detection systems in iot industry 4.0. In 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 1--6.
[10]
Roman Kolcun, Diana Andreea Popescu, Vadim Safronov, Poonam Yadav, Anna Maria Mandalari, Yiming Xie, Richard Mortier, and Hamed Haddadi. 2020. The Case for Retraining of ML Models for IoT Device Identification at the Edge. CoRR abs/2011.08605 (2020). arXiv:2011.08605 https://arxiv.org/abs/2011.08605
[11]
Sándor Laki, Radostin Stoyanov, Dávid Kis, Robert Soulé, Péter Vörös, and Noa Zilberman. 2021. P4Pi: P4 on Raspberry Pi for Networking Education. SIGCOMM Comput. Commun. Rev. 51, 3 (2021).
[12]
Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection. February (2018), 18--21. arXiv:1802.09089
[13]
Arman Pashamokhtari, Norihiro Okui, Yutaka Miyake, Masataka Nakahara, and Hassan Habibi Gharakheili. 2021. Inferring Connected IoT Devices from IPFIX Records in Residential ISP Networks. In 2021 IEEE 46th Conference on Local Computer Networks (LCN). 57--64.
[14]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019).
[15]
Arunan Sivanathan, Hassan Habibi Gharakheili, and Vijay Sivaraman. 2020. Managing IoT Cyber-Security Using Programmable Telemetry and Machine Learning. IEEE Transactions on Network and Service Management 17, 1 (2020), 60--74.
[16]
Radostin Stoyanov, Adam Wolnikowski, Robert Soulé, Sándor Laki, and Noa Zilberman. 2021. Building an Internet Router with P4Pi (EuroP4 '21). ACM, New York, NY, USA, 151--156.
[17]
Qinying Wang, Shouling Ji, Yuan Tian, Xuhong Zhang, Binbin Zhao, Yuhong Kan, Zhaowei Lin, Changting Lin, Shuiguang Deng, Alex X. Liu, and Raheem Beyah. 2021. MPInspector: A Systematic and Automatic Approach for Evaluating the Security of IoT Messaging Protocols. In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 4205--4222.
[18]
Qiao Yan, Wenyao Huang, Xupeng Luo, Qingxiang Gong, and F. Richard Yu. 2018. A Multi-Level DDoS Mitigation Framework for the Industrial Internet of Things. IEEE Communications Magazine 56, 2 (2018), 30--36.
[19]
Changgang Zheng, Zhaoqi Xiong, Thanh T Bui, Siim Kaupmees, Riyad Bensoussane, Antoine Bernabeu, Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman. 2022. IIsy: Practical In-Network Classification.
[20]
Changgang Zheng, Mingyuan Zang, Xinpeng Hong, Riyad Bensoussane, Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman. 2022. Automating In-Network Machine Learning.

Cited By

View all
  • (2024)Planter: Rapid Prototyping of In-Network Machine Learning InferenceACM SIGCOMM Computer Communication Review10.1145/3687230.368723254:1(2-21)Online publication date: 6-Aug-2024
  • (2024)Demo: P4Xtnd: P4 Programmability on Resource Constrained Environments with Extended Network FunctionalitiesProceedings of the ACM SIGCOMM 2024 Conference: Posters and Demos10.1145/3672202.3673731(104-106)Online publication date: 4-Aug-2024
  • (2024) Marina : Realizing ML-Driven Real-Time Network Traffic Monitoring at Terabit Scale IEEE Transactions on Network and Service Management10.1109/TNSM.2024.338239321:3(2773-2790)Online publication date: Jun-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGCOMM '22: Proceedings of the SIGCOMM '22 Poster and Demo Sessions
August 2022
69 pages
ISBN:9781450394345
DOI:10.1145/3546037
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 October 2022

Check for updates

Author Tags

  1. P4
  2. in-network computing
  3. internet of things
  4. machine learning
  5. security

Qualifiers

  • Poster

Conference

SIGCOMM '22
Sponsor:
SIGCOMM '22: ACM SIGCOMM 2022 Conference
August 22 - 26, 2022
Amsterdam, Netherlands

Acceptance Rates

Overall Acceptance Rate 92 of 158 submissions, 58%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)101
  • Downloads (Last 6 weeks)3
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Planter: Rapid Prototyping of In-Network Machine Learning InferenceACM SIGCOMM Computer Communication Review10.1145/3687230.368723254:1(2-21)Online publication date: 6-Aug-2024
  • (2024)Demo: P4Xtnd: P4 Programmability on Resource Constrained Environments with Extended Network FunctionalitiesProceedings of the ACM SIGCOMM 2024 Conference: Posters and Demos10.1145/3672202.3673731(104-106)Online publication date: 4-Aug-2024
  • (2024) Marina : Realizing ML-Driven Real-Time Network Traffic Monitoring at Terabit Scale IEEE Transactions on Network and Service Management10.1109/TNSM.2024.338239321:3(2773-2790)Online publication date: Jun-2024
  • (2024)In-Network Machine Learning Using Programmable Network Devices: A SurveyIEEE Communications Surveys & Tutorials10.1109/COMST.2023.334435126:2(1171-1200)Online publication date: Oct-2025
  • (2024)PiGatewayComputer Communications10.1016/j.comcom.2023.11.019213:C(309-319)Online publication date: 27-Feb-2024
  • (2023)Federated Learning-Based In-Network Traffic Analysis on IoT Edge2023 IFIP Networking Conference (IFIP Networking)10.23919/IFIPNetworking57963.2023.10186438(1-6)Online publication date: 12-Jun-2023
  • (2023)LOBIN: In-Network Machine Learning for Limit Order Books2023 IEEE 24th International Conference on High Performance Switching and Routing (HPSR)10.1109/HPSR57248.2023.10147958(159-166)Online publication date: 5-Jun-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media