[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A Normalized Slicing-assigned Virtualization Method for 6G-based Wireless Communication Systems

Published: 01 November 2022 Publication History

Abstract

The next generation of wireless communication systems will rely on advantageous sixth-generation wireless network (6G) features and sophisticated edge Internet-of-Things technology to provide continuous service delegation and resource allocation. Network slicing and virtualization are common in these scenarios to meet user demands and application services. This article introduces a Normalized Slicing-assigned Virtualization Method for satisfying the 6G features in future generation systems. The proposed method relies on available resource roots and time intervals for replications. Based on the availability and Accessibility, the resource virtualization and network slicing processes are forwarded. The proposed method exploits federated learning for determining availability and accessibility models in detecting slicing, virtualization, or both the requirements throughout the resource sharing process. This improves the resource sharing rate, with less latency and high processing despite the user and application demands. The learning models are trained to balance replication and network slicing for confining complexity across different resources. The proposed method's performance is validated using the above metrics for varying users and intervals.

References

[1]
A. Dogra, R. K. Jha, and S. Jain. 2020. A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies. IEEE Access 9 (2020), 67512–67547.
[2]
G. Gür. 2020. Expansive networks: Exploiting spectrum sharing for capacity boost and 6G vision. J. Commun. Netw. 22, 6 (2020), 444–454.
[3]
A. Saad, M. Al-Ma'aitah, and A. Alwadain. 2020. 6G technology based advanced virtual multi-purpose embedding algorithm to solve far-reaching network effects. Comput. Commun. 160 (2020), 749–758.
[4]
K. Sheth, K. Patel, H. Shah, S. Tanwar, R. Gupta, and N. Kumar. 2020. A taxonomy of AI techniques for 6G communication networks. Comput. Commun. 161 (2020), 279–303.
[5]
R. Dilli. 2021. Design and feasibility verification of 6G wireless communication systems with state of the art technologies. Int. J. Wireless Inf. Networks, 1–25.
[6]
T. K. Rodrigues, J. Liu, and N. Kato. 2021. Application of cybertwin for offloading in mobile multiaccess edge computing for 6G networks. IEEE IoT J. 8, 22 (2021), 16231–16242.
[7]
J. Li, W. Shi, Q. Ye, S. Zhang, W. Zhuang, and X. Shen. 2021. Joint virtual network topology design and embedding for cybertwin-enabled 6G core networks. IEEE IoT J. 8, 22 (2021), 16313–16325.
[8]
H. Xu, P. V. Klaine, O. Onireti, B. Cao, M. Imran, and L. Zhang. 2020. Blockchain-enabled resource management and sharing for 6G communications. Digit. Commun. Netw. 6, 3 (2020), 261–269.
[9]
C. Liu, W. Feng, X. Tao, and N. Ge. 2021. MEC-empowered non-terrestrial network for 6G wide-area time-sensitive internet of things. arXiv:2103.11907. Retrieved from https://arxiv.org/abs/2103.11907.
[10]
L. Jiang, X. Chang, J. Mišić, V. B. Mišić, and J. Bai. 2022. Understanding MEC empowered vehicle task offloading performance in 6G networks. Peer-to-Peer Networking and Applications 15, 2 (2022), 1090--1104.
[11]
L. Barbieri, S. Savazzi, M. Brambilla, and M. Nicoli. 2021. Decentralized federated learning for extended sensing in 6G connected vehicles. Vehic. Commun. (2021), 100396.
[12]
M. Hao, D. Ye, S. Wang, B. Tan, and R. Yu. 2021. URLLC resource slicing and scheduling for trustworthy 6G vehicular services: A federated reinforcement learning approach. Phys. Commun. 49 (2021), 101470.
[13]
S. Kukliński, L. Tomaszewski, R. Kolakowski, and P. Chemouil. 2021. 6G-LEGO: A framework for 6G network slices. J. Commun. Netw. (2021)
[14]
T. R. Raddo, S. Rommel, B. Cimoli, C. Vagionas, D. Perez-Galacho, E. Pikasis, and I. T. Monroy. 2021. Transition technologies towards 6G networks. EURASIP J. Wireless Commun. Network. 1 (2021), 1–22.
[15]
Y. Kim and H. Lim. 2021. Multi-agent reinforcement learning-based resource management for end-to-end network slicing. IEEE Access 9 (2021), 56178–56190.
[16]
R. Bruschi, F. Davoli, P. Lago, and J. F. Pajo. 2019. A multi-clustering approach to scale distributed tenant networks for mobile edge computing. IEEE J. Select. Areas Commun. 37, 3 (2019), 499–514.
[17]
A. M. Escolar, J. M. Alcaraz-Calero, P. Salva-Garcia, J. B. Bernabe, and Q. Wang. 2021. Adaptive network slicing in multi-tenant 5G IoT networks. IEEE Access 9 (2021), 14048–14069.
[18]
J. Mei, X. Wang, and K. Zheng. 2020. An intelligent self-sustained RAN slicing framework for diverse service provisioning in 5G-beyond and 6G networks. Intell. Converg. Netw. 1, 3 (2020), 281–294.
[19]
J. Mei, X. Wang, K. Zheng, G. Boudreau, A. B. Sediq, and H. Abou-zeid. 2021. Intelligent radio access network slicing for service provisioning in 6G: A hierarchical deep reinforcement learning approach. IEEE Trans. Commun. (2021).
[20]
H. Cao, J. Du, H. Zhao, D. X. Luo, N. Kumar, L. Yang, and F. R. Yu. 2021. Resource-Ability Assisted Service Function Chain Embedding and Scheduling for 6G Networks With Virtualization. IEEE Trans. Vehic. Technol. 70, 4 (2021), 3846–3859.
[21]
L. Magoula, S. Barmpounakis, I. Stavrakakis, and N. Alonistioti. 2021. A genetic algorithm approach for service function chain placement in 5G and beyond, virtualized edge networks. Comput. Netw. 195 (2021), 108157.
[22]
M. Hussain, L. F. Wei, A. Lakhan, S. Wali, S. Ali, and A. Hussain. 2021. Energy and performance-efficient task scheduling in heterogeneous virtualized cloud computing. Sust. Comput.: Inf. Syst. 30 (2021), 100517.
[23]
J. Son and R. Buyya. 2019. Latency-aware virtualized network function provisioning for distributed edge clouds. J. Syst. Softw. 152 (2019), 24–31.
[24]
K. S. Ghai, S. Choudhury, and A. Yassine. 2020. Efficient algorithms to minimize the end-to-end latency of edge network function virtualization. J. Amb. Intell. Human. Comput. (2020), 1–12.
[25]
M. P. Alves, F. C. Delicato, I. L. Santos, and P. F. Pires. 2020. LW-CoEdge: A lightweight virtualization model and collaboration process for edge computing. World Wide Web 23, 2 (2020), 1127–1175.
[26]
S. S. Shinde, D. Marabissi, and D. Tarchi. 2021. A network operator-biased approach for multi-service network function placement in a 5G network slicing architecture. Comput. Netw. 201 (2021), 108598.
[27]
D. Alotaibi, V. Thayananthan, and J. Yazdani. 2021. The 5G network slicing using SDN based technology for managing network traffic. Proc. Comput. Sci. 194 (2021), 114–121.
[28]
R. Montero, F. Agraz, A. Pagès, and S. Spadaro. 2020. Real-time maintenance of latency-sensitive 5G services through network slicing. Photon. Netw. Commun. 40, 3 (2020), 221–232.
[29]
J. Feng, Q. Pei, F. R. Yu, X. Chu, J. Du, and L. Zhu. 2020. Dynamic network slicing and resource allocation in mobile edge computing systems. IEEE Trans. Vehic. Technol. 69, 7 (2020), 7863–7878.
[31]
Y. Li, Z. Wang, and J. Yu. 2022. Densely enhanced semantic network for conversation system in social Media. ACM Trans. Multimedia Comput. Commun. Appl. 18, 4 (2022), 1–24.
[32]
Q. Wang, S. Li, X. Zhang, and G. Feng. 2022. Multi-granularity brushstrokes network for universal style transfer. ACM Trans. Multimedia Comput. Commun. Appl. 18, 4 (2022), 1–17.
[33]
J. Wu, J. Jiang, M. Qi, C. Chen, and J. Zhang. 2022. An End-to-end heterogeneous restraint network for RGB-D Cross-modal person Re-identification. ACM Trans. Multimedia Comput. Commun. Appl. 18, 4 (2022), 1–22.
[34]
M. Duan, K. Li, J. Deng, B. Xiao, and Q. Tian. 2022. A novel multi-sample generation method for adversarial attacks. ACM Trans. Multimedia Comput. Commun. Appl. 18, 4 (2022), 1–21.
[35]
Q. Shi, H. B. Zhang, Z. Li, J. X. Du, Q. Lei, and J. H. Liu. 2022. Shuffle-invariant network for action recognition in videos. ACM Trans. Multimedia Comput. Commun. Appl. 18, 3 (2022), 1–18.

Cited By

View all
  • (2024)Federated Learning-Empowered Mobile Network Management for 5G and Beyond Networks: From Access to CoreIEEE Communications Surveys & Tutorials10.1109/COMST.2024.335291026:3(2176-2212)Online publication date: 16-Jan-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Multimedia Computing, Communications, and Applications
ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 18, Issue 3s
October 2022
381 pages
ISSN:1551-6857
EISSN:1551-6865
DOI:10.1145/3567476
  • Editor:
  • Abdulmotaleb El Saddik
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 November 2022
Online AM: 18 July 2022
Accepted: 23 June 2022
Revised: 24 May 2022
Received: 27 February 2022
Published in TOMM Volume 18, Issue 3s

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 6G
  2. federated learning
  3. network slicing
  4. virtualization

Qualifiers

  • Research-article
  • Refereed

Funding Sources

  • King Saud University, Riyadh, Saudi Arabia

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)51
  • Downloads (Last 6 weeks)4
Reflects downloads up to 02 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Federated Learning-Empowered Mobile Network Management for 5G and Beyond Networks: From Access to CoreIEEE Communications Surveys & Tutorials10.1109/COMST.2024.335291026:3(2176-2212)Online publication date: 16-Jan-2024

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media