[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3543873.3587610acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
short-paper

Intent-Aware Propensity Estimation via Click Pattern Stratification

Published: 30 April 2023 Publication History

Abstract

Counterfactual learning to rank via inverse propensity weighting is the most popular approach to train ranking models using biased implicit user feedback from logged search data. Standard click propensity estimation techniques rely on simple models of user browsing behavior that primarily account for the attributes of the presentation context that affect whether the relevance of an item to the search context is observed. Most notably, the inherent effect of the listwise presentation of the items on users’ propensity for engagement is captured in the position of the presented items on the search result page. In this work, we enrich this position bias based click propensity model by proposing an observation model that further incorporates the underlying search intent, as reflected in the user’s click pattern in the search context. Our approach does not require an intent prediction model based on the content of the search context. Instead, we rely on a simple, yet effective, non-causal estimate of the user’s browsing intent from the number of click events in the search context. We empirically characterize the distinct rank decay patterns of the estimated click propensities in the characterized intent classes. In particular, we demonstrate a sharper decay of click propensities in top ranks for the intent class identified by sparse user clicks and the higher likelihood of observing clicks in lower ranks for the intent class identified by higher number of user clicks. We show that the proposed intent-aware propensity estimation technique helps with training ranking models with more effective personalization and generalization power through empirical results for a ranking task in a major e-commerce platform.

References

[1]
Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, and Marc Najork. 2019. Addressing Trust Bias for Unbiased Learning-to-Rank. In The World Wide Web Conference. 4–14.
[2]
Olivier Chapelle and Ya Zhang. 2009. A dynamic bayesian network click model for web search ranking. In Proceedings of the 18th international conference on World wide web. 1–10.
[3]
Zhichong Fang, Aman Agarwal, and Thorsten Joachims. 2019. Intervention harvesting for context-dependent examination-bias estimation. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 825–834.
[4]
Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased learning-to-rank with biased feedback. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. ACM, 781–789.
[5]
Zhen Qin, Suming J Chen, Donald Metzler, Yongwoo Noh, Jingzheng Qin, and Xuanhui Wang. 2020. Attribute-based propensity for unbiased learning in recommender systems: Algorithm and case studies. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2359–2367.
[6]
Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting clicks: estimating the click-through rate for new ads. In Proceedings of the 16th international conference on World Wide Web. 521–530.
[7]
Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016. Learning to rank with selection bias in personal search. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. 115–124.
[8]
Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc Najork. 2018. Position bias estimation for unbiased learning to rank in personal search. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM, 610–618.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
WWW '23 Companion: Companion Proceedings of the ACM Web Conference 2023
April 2023
1567 pages
ISBN:9781450394192
DOI:10.1145/3543873
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 April 2023

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. learning to rank
  2. unbiased learning
  3. weak supervision

Qualifiers

  • Short-paper
  • Research
  • Refereed limited

Conference

WWW '23
Sponsor:
WWW '23: The ACM Web Conference 2023
April 30 - May 4, 2023
TX, Austin, USA

Acceptance Rates

Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 151
    Total Downloads
  • Downloads (Last 12 months)48
  • Downloads (Last 6 weeks)3
Reflects downloads up to 31 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media