[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3432261.3432269acmotherconferencesArticle/Chapter ViewAbstractPublication PageshpcasiaConference Proceedingsconference-collections
research-article
Open access

Efficient Contour Integral-based Eigenvalue Computation Using an Iterative Linear Solver with Shift-Invert Preconditioning

Published: 20 January 2021 Publication History

Abstract

Contour integral-based (CI) eigenvalue solvers are one of the efficient and robust approaches for sparse eigenvalue problems. They have attracted attention owing to their inherent parallelism. For implementing a CI eigensolver, the inner linear systems arising in the algorithm need to be solved using an efficient method. One widely-used method is to use a sparse direct linear solver provided by a well-established numerical library; it is numerically robust and presents good load balancing of parallel execution of the CI eigensolver. However, owing to high total computational and memory cost, the performance of the direct solver approach is suboptimal. In this study, we propose an alternative method that utilizes a block Krylov iterative linear solver and shift-invert preconditioning that can take advantage of the shift-invariance of the block Krylov subspace. Our approach adaptively sets a preconditioning parameter according to the number of parallel processes to reduce the iteration counts. Several numerical examples confirm that our method outperforms the direct solver approach.

References

[1]
[n.d.]. CONQUEST: Linear Scaling DFT. http://www.order-n.org/.
[2]
[n.d.]. ELSES matrix library. http://www.elses.jp/matrix/.
[3]
[n.d.]. FEAST Eigenvalue Solver. http://www.ecs.umass.edu/~polizzi/feast/.
[4]
[n.d.]. MUMPS: MUltifrontal Massively Parallel sparse direct Solver. http://mumps.enseeiht.fr/.
[5]
[n.d.]. z-Pares: Parallel Eigenvalue Solver. https://zpares.cs.tsukubaa.ac.jp.
[6]
Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011), 25 pages. https://doi.org/10.1145/2049662.2049663
[7]
Yasunori Futamura, Tetsuya Sakurai, Shinnosuke Furuya, and Jun-Ichi Iwata. 2013. Efficient Algorithm for Linear Systems Arising in Solutions of Eigenproblems and Its Application to Electronic-Structure Calculations. In High Performance Computing for Computational Science - VECPAR 2012, Michel Daydé, Osni Marques, and Kengo Nakajima (Eds.). Lecture Notes in Computer Science, Vol. 7851. Springer Berlin Heidelberg, 226–235. https://doi.org/10.1007/978-3-642-38718-0_23
[8]
M.J. Gillan, D.R. Bowler, A.S. Torralba, and T. Miyazaki. 2007. Order-N first-principles calculations with the conquest code. Computer Physics Communications 177, 1 (2007), 14–18. https://doi.org/10.1016/j.cpc.2007.02.075 Proceedings of the Conference on Computational Physics 2006.
[9]
Gene H. Golub and Charles F. Van Loan. 2013. Matrix Computations(4th ed.). Johns Hopkins University Press, Baltimore, MD.
[10]
Roger G. Grimes, John G. Lewis, and Horst D. Simon. 1994. A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems. SIAM J. Matrix Anal. Appl. 15, 1 (1994), 228–272. https://doi.org/10.1137/S0895479888151111
[11]
Martin H. Gutknecht and Thomas Schmelzer. 2009. The block grade of a block Krylov space. Linear Algebra Appl. 430, 1 (2009), 174–185. https://doi.org/10.1016/j.laa.2008.07.008
[12]
Takeo Hoshi, Hiroto Imachi, Akiyoshi Kuwata, Kohsuke Kakuda, Takatoshi Fujita, and Hiroyuki Matsui. 2019. Numerical aspect of large-scale electronic state calculation for flexible device material. Japan Journal of Industrial and Applied Mathematics 36 (2019), 685–698. https://doi.org/10.1007/s13160-019-00358-2
[13]
Takanori Ide, Yuto Inoue, Yasunori Futamura, and Tetsuya Sakurai. 2017. Highly Parallel Computation of Generalized Eigenvalue Problem in Vibration for Automatic Transmission of Vehicles Using the Sakurai–Sugiura Method and Supercomputers. In Mathematical Analysis of Continuum Mechanics and Industrial Applications, Hiromichi Itou, Masato Kimura, Vladimír Chalupecký, Kohji Ohtsuka, Daisuke Tagami, and Akira Takada (Eds.). Springer Singapore, Singapore, 207–218.
[14]
Tsutomu Ikegami and Tetsuya Sakurai. 2010. Contour integral eigensolver for non-Hermitian systems: a Rayleigh-Ritz-type approach. Taiwanese J. Math. 14(2010), 825–837.
[15]
Tsutomu Ikegami, Tetsuya Sakurai, and Umpei Nagashima. 2010. A Filter Diagonalization for Generalized Eigenvalue Problems Based on the Sakurai-Sugiura Projection Method. J. Comput. Appl. Math. 233, 8 (Feb. 2010), 1927–1936. https://doi.org/10.1016/j.cam.2009.09.029
[16]
Akira Imakura, Lei Du, and Tetsuya Sakurai. 2014. A block Arnoldi-type contour integral spectral projection method for solving generalized eigenvalue problems. Applied Mathematics Letters 32 (2014), 22–27. https://doi.org/10.1016/j.aml.2014.02.007
[17]
Akira Imakura, Lei Du, and Hiroto Tadano. 2013. A Weighted Block GMRES method for solving linear systems with multiple right-hand sides. JSIAM Letters 5(2013), 65–68. https://doi.org/10.14495/jsiaml.5.65
[18]
Akira Imakura and Tetsuya Sakurai. 2018. Block SS–CAA: A complex moment-based parallel nonlinear eigensolver using the block communication-avoiding Arnoldi procedure. Parallel Comput. 74(2018), 34–48. https://doi.org/10.1016/j.parco.2017.11.007 Parallel Matrix Algorithms and Applications (PMAA’16).
[19]
J. Kestyn, V. Kalantzis, E. Polizzi, and Y. Saad. 2016. PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers. In SC ’16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 178–189.
[20]
Karl Meerbergen. 2003. The Solution of Parametrized Symmetric Linear Systems. SIAM J. Matrix Anal. Appl. 24, 4 (2003), 1038–1059. https://doi.org/10.1137/S0895479800380386
[21]
Karl Meerbergen and Zhaojun Bai. 2010. The Lanczos Method for Parameterized Symmetric Linear Systems with Multiple Right-Hand Sides. SIAM J. Matrix Anal. Appl. 31, 4 (2010), 1642–1662. https://doi.org/10.1137/08073144X
[22]
Ayako Nakata, Jack S. Baker, Shereif Y. Mujahed, Jack T. L. Poulton, Sergiu Arapan, Jianbo Lin, Zamaan Raza, Sushma Yadav, Lionel Truflandier, Tsuyoshi Miyazaki, and David R. Bowler. 2020. Large scale and linear scaling DFT with the CONQUEST code. The Journal of Chemical Physics 152, 16 (2020), 164112. https://doi.org/10.1063/5.0005074
[23]
Ayako Nakata, Yasunori Futamura, Tetsuya Sakurai, David R Bowler, and Tsuyoshi Miyazaki. 2017. Efficient Calculation of Electronic Structure Using O(N) Density Functional Theory. Journal of Chemical Theory and Computation 13, 9 (2017), 4146–4153. https://doi.org/10.1021/acs.jctc.7b00385
[24]
Dianne P. O’Leary. 1980. The block conjugate gradient algorithm and related methods. Linear Algebra Appl. 29(1980), 293–322. https://doi.org/10.1016/0024-3795(80)90247-5 Special Volume Dedicated to Alson S. Householder.
[25]
C. C. Paige and M. A. Saunders. 1975. Solution of Sparse Indefinite Systems of Linear Equations. SIAM J. Numer. Anal. 12, 4 (1975), 617–629. https://doi.org/10.1137/0712047
[26]
Eric Polizzi. 2009. Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79(2009), 115112. Issue 11. https://doi.org/10.1103/PhysRevB.79.115112
[27]
Yousef Saad. 2011. Numerical Methods for Large Eigenvalue Problems (revised ed.). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611970739
[28]
Youcef Saad and Martin H. Schultz. 1986. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Statist. Comput. 7, 3 (1986), 856–869.
[29]
Tetsuya Sakurai and Hiroshi Sugiura. 2003. A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159, 1 (2003), 119–128.
[30]
Tetsuya Sakurai and Hiroto Tadano. 2007. CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems. Hokkaido Math. J. 36(2007), 745–757.
[31]
Tetsuya Sakurai, Hiroto Tadano, and Yasunori Futamura. 2013. Efficient parameter estimation and implementation of a contour integral-based eigensolver. J. Algo. Comput. Tech. 7(2013), 249–269.
[32]
Olaf Schenk and Klaus Gärtner. 2011. PARDISO. In Encyclopedia of Parallel Computing, David Padua(Ed.). Springer US, Boston, MA, 1458–1464. https://doi.org/10.1007/978-0-387-09766-4_90
[33]
Kirk M. Soodhalter. 2015. A block MINRES algorithm based on the band Lanczos method. Numerical Algorithms 69, 3 (2015), 473–494. https://doi.org/10.1007/s11075-014-9907-z
[34]
Kirk M. Soodhalter. 2016. Block Krylov Subspace Recycling for Shifted Systems with Unrelated Right-Hand Sides. SIAM Journal on Scientific Computing 38, 1 (2016), A302–A324. https://doi.org/10.1137/140998214
[35]
Brigitte Vital. 1990. Étude de quelques méthodes de résolution de problèmes linéaires de grande taille sur multiprocesseur. Ph. D. thesis, Université de Rennes I(1990).
[36]
Yusaku Yamamoto, Yuji Nakatsukasa, Yuka Yanagisawa, and Takeshi Fukaya. 2016. Roundoff error analysis of the CholeskyQR2 algorithm in an oblique inner product. JSIAM Letters 8(2016), 5–8. https://doi.org/10.14495/jsiaml.8.5

Cited By

View all

Index Terms

  1. Efficient Contour Integral-based Eigenvalue Computation Using an Iterative Linear Solver with Shift-Invert Preconditioning
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image ACM Other conferences
        HPCAsia '21: The International Conference on High Performance Computing in Asia-Pacific Region
        January 2021
        143 pages
        ISBN:9781450388429
        DOI:10.1145/3432261
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 20 January 2021

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. block Krylov subspace method
        2. contour integral-based solver
        3. shift-invert preconditioning
        4. sparse generalized eigenvalue problem

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Funding Sources

        Conference

        HPC Asia 2021

        Acceptance Rates

        Overall Acceptance Rate 69 of 143 submissions, 48%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 887
          Total Downloads
        • Downloads (Last 12 months)246
        • Downloads (Last 6 weeks)32
        Reflects downloads up to 06 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media