[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3429309.3429316acmotherconferencesArticle/Chapter ViewAbstractPublication PagesclimateinformaticsConference Proceedingsconference-collections
research-article
Open access

A Gaussian process state-space model for atmospheric CO2 and sea surface temperature index reconstruction from boron isotope and planktonic δ18O proxies

Published: 11 January 2021 Publication History

Abstract

It often occurs in practice that only a small number of observations are given for reconstructing past climate events in the field of paleoclimatology. State-space models can overcome such scarcity by giving priors to those hidden states to make them correlated to one another. Inferring multiple events simultaneously from various proxies to exploit their mutual dependency is another option. Here we present a Gaussian process state-space model to reconstruct both atmospheric CO2 and sea surface temperature index from boron isotope and planktonic δ18O proxies.

References

[1]
Zexun Chen, Bo Wang, and Alexander Gorban. 2020. Multivariate Gaussian and Student − t Process Regression for Multi-output Prediction. Neural Computing and Applications (04 2020), 3005–3028.
[2]
J. Christen and E. Sergio. 2009. A New Robust Statistical Model for Radiocarbon Data. Radiocarbon 51, 3 (2009), 1047–1059.
[3]
Thibault de Garidel-Thoron, Yair Rosenthal, Franck Bassinot, and Luc Beaufort. 2005. Stable sea surface temperatures in the Western Pacific warm pool over the past 1.75 million years. Nature 433(2005), 294–298.
[4]
A. Doucet, N. de Freitas, and N. (Eds.) Gordon. 2001. Sequential Monte Carlo methods in practice. Springer.
[5]
Kelsey A. Dyez, Bärbel Hönisch, and Gavin A. Schmidt. 2018. Early Pleistocene Obliquity-Scale pCO2 Variability at  1.5 Million Years Ago. Paleoceanography and Paleoclimatology 33, 11 (2018), 1270–1291.
[6]
Stefanos Eleftheriadis, Thomas F.W. Nicholson, Marc P. Deisenroth, and James Hensman. 2017. Identification of Gaussian Process State Space Models. In Proceedings of the 31st International Conference on Neural Information Processing Systems. 5315–5325.
[7]
Gavin L. Foster and James W.B. Rae. 2016. Reconstructing Ocean pH with Boron Isotopes in Foraminifera. Annual Review of Earth and Planetary Sciences 44, 1 (2016), 207–237.
[8]
Roger Frigola, Yutian Chen, and Carl E. Rasmussen. 2014. Variational Gaussian Process State-Space Models. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 2. MIT Press, 3680–3688.
[9]
Marc G. Genton. 2002. Classes of Kernels for Machine Learning: A Statistics Perspective. Journal of Machine Learning Research 2 (2002), 299–312.
[10]
W. K. Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1 (1970), 97–109.
[11]
Bärbel Hönisch, N. Gary Hemming, David Archer, Mark Siddall, and Jerry F. McManus. 2009. Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene Transition. Science 324, 5934 (2009), 1551–1554.
[12]
Andreas Indermühle, Eric Monnin, Bernhard Stauffer, Thomas F. Stocker, and Martin Wahlen. 2000. Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome Ice Core, Antarctica. Geophysical Research Letters 27, 5 (2000), 735–738.
[13]
Diederik P Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes. arxiv:1312.6114 [stat.ML] arXiv:1312.6114v10 [stat.ML].
[14]
M. Klaas, M. Briers, N. de Freitas, A. Doucet, S. Maskell, and D. Lang. 2006. Fast particle smoothing: if I had a million particles. In ICML.
[15]
T. Lee. 2020. State-space Models and Gaussian Processes in Paleoceanography and Paleoclimatology. Ph.D. Dissertation. Brown University.
[16]
Dieter Lüthi, Martine Floch, Bernhard Bereiter, Thomas Blunier, Jean-Marc Barnola, Urs Siegenthaler, Dominique Raynaud, Jean Jouzel, Hubertus Fischer, Kenji Kawamura, and Thomas Stocker. 2008. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453(2008), 379–382.
[17]
D. J. MacKay. 1998. Introduction to Gaussian processes. NATO ASI Series F Computer and Systems Sciences 168 (1998), 133–166.
[18]
L. Martino, J. Read, and D. Luengo. 2015. Independent Doubly Adaptive Rejection Metropolis Sampling Within Gibbs Sampling. IEEE Transactions on Signal Processing 63, 12 (2015), 3123–3138.
[19]
B. Matérn. 1986. Spatial Variation. Springer-Verlag.
[20]
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of State Calculations by Fast Computing Machines. Journal of Chemical Physics 21 (1953), 1087–1092.
[21]
Eric Monnin, Andreas Indermühle, André Dällenbach, Jacqueline Flückiger, Bernhard Stauffer, Thomas F. Stocker, Dominique Raynaud, and Jean-Marc Barnola. 2001. Atmospheric CO2 Concentrations over the Last Glacial Termination. Science 291, 5501 (2001), 112–114.
[22]
J. R. Petit, Jean Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, Isabelle BASILE-DOELSCH, M Bender, J Chappellaz, M Davis, G Delaygue, M Delmotte, V. M. Kotlyakov, Michel Legrand, V. Y. Lipenkov, C Lorius, L Pepin, C Ritz, E Saltzman, and M Stievenard. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 6735 (1999), 429–436. https://hal.archives-ouvertes.fr/hal-00756651
[23]
C. E. Rasmussen and C. K. I. Williams. 2006. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press.
[24]
Dominique Raynaud, Jean-Marc Barnola, Roland Souchez, Reginald Lorrain, Jean-Robert Petit, Paul Duval, and Vladimir Y. Lipenkov. 2005. The record for marine isotopic stage 11. Nature 436(2005), 39–40.
[25]
J. D. Shakun, D. W. Lea, L. E. Lisiecki, and M. E. Raymo. 2015. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth and Planetary Science Letters 426 (2015), 58–68.
[26]
Urs Siegenthaler, Thomas F. Stocker, Eric Monnin, Dieter Lüthi, Jakob Schwander, Bernhard Stauffer, Dominique Raynaud, Jean-Marc Barnola, Hubertus Fischer, Valérie Masson-Delmotte, and Jean Jouzel. 2005. Stable Carbon Cycle - Climate Relationship During the Late Pleistocene. Science 310, 5752 (2005), 1313–1317.
[27]
M. L. Stein. 1999. Interpolation of Spatial Data: Some Theory for Kriging. Springer-Verlag New York.
[28]
Michalis Titsias. 2009. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics(Proceedings of Machine Learning Research, Vol. 5). PMLR, 567–574.
  1. A Gaussian process state-space model for atmospheric CO2 and sea surface temperature index reconstruction from boron isotope and planktonic δ18O proxies

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    CI2020: Proceedings of the 10th International Conference on Climate Informatics
    September 2020
    138 pages
    ISBN:9781450388481
    DOI:10.1145/3429309
    This work is licensed under a Creative Commons Attribution-NoDerivs International 4.0 License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 January 2021

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Gaussian process
    2. atmospheric CO2
    3. boron isotope
    4. paleoclimatology
    5. planktonic δ18O
    6. sea surface temperature
    7. state-space model

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    CI2020
    CI2020: 10th International Conference on Climate Informatics
    September 22 - 25, 2020
    virtual, United Kingdom

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 199
      Total Downloads
    • Downloads (Last 12 months)71
    • Downloads (Last 6 weeks)12
    Reflects downloads up to 15 Jan 2025

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media