[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3491003.3494122acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicdcnConference Proceedingsconference-collections
research-article

Blockchain Based Energy Trade

Published: 24 January 2022 Publication History

Abstract

In today’s world, there is a growing demand for intelligent applications to make city life an interesting experience and sustainable. This paper introduces a Blockchain based peer-to-peer transaction framework applicable for the distributed clean energy trade. The energy-trading model is designed to initiate transactions autonomously based on the data received from the energy management unit. The application works autonomously to manage the generation, consumption and distribution of clean energy using distributed renewable energy sources. The proposed Decentralized Autonomous transaction platform is an autonomous Blockchain-based peer-to-peer transaction framework that aims to increase clean energy production, consumption and optimization, which indeed will reduce greenhouse gas emissions in metro-cities where the excessive clean energy from the distributed energy sources, including homes, office buildings and factories are autonomously traded among the population inside the city.

References

[1]
G. Merlino F. Longo A. Panarello, N. Tapasand A. Puliafito. 2018. Blockchain and iot integration: A systematic survey. Sensors 18, 8 (Jan. 2018). https://doi.org/10.3390/s18082575
[2]
Chalkiadakis G Akasiadis C. 2016. Decentralized large-scale electricity consumption shifting by prosumer cooperatives. in: Kaminka GA, Fox M, BP (Eds.), ECAI 2016. In: Proceedings of the 22nd European Conference on Artificial Intelligence (Jan. 2016), 175–183. https://doi.org/10.3233/978-1-61499-672-9-175
[3]
J. B. Ernst Z. Hong C. Feng Cai, Z. Wangand V. C. Leung. 2018. “Decentralized applications: The Blockchain-empowered software system. IEEE Access 6 (Jan. 2018), 53019–53033. https://doi.org/10.1109/ACCESS.2018.2870644
[4]
Christidis and M. Devetsikiotis. 2008. Blockchains and smart contracts for the internet of things. IEEE Access 4 (Jan. 2008), 2292–2303. https://doi.org/10.1109/ACCESS.2016.2566339
[5]
T. N. Dinh and M. T. Thai. 2018. AI and Blockchain: A Disruptive Integration. Computers 51, 9 (Sept. 2018), 48–53. http://dx.doi.org/10.1109/MC.2018.3620971
[6]
De Beaufort R Plana R Imbault F, Swiatek M. 2017. The green Blockchain: Managing decentralized energy production and consumption.In: Proceedings of the 2017 IEEE International Conference Environ Electrical Engineering and 2017 IEEE International Commercial Power System Europe (Jan. 2017). https://doi.org/10.1109/EEEIC.2017.7977613
[7]
N Nizamuddini K Salahi, M. H. Rehman and A Al-Fuqaha. 2019. Blockchain for AI: Review and Open Research Challenges. IEEE Access Digital Object Identifier 10.1109/ ACCESS (Jan. 2019), 2169–3536. https://doi.org/10.1109/ACCESS.2018.2890507
[8]
M. Koch. 2018. Artificial Intelligence is becoming natural. Cell Journal 173, 3 (Jan. 2018), 531–533. https://doi.org/10.1016/j.cell.2018.04.007
[9]
V. Lopes and L. A. Alexandre. 2018. An overview of Blockchain Integration with Robotics and Artificial Intelligence. (Jan. 2018). https://arxiv.org/abs/1810.00329v1
[10]
V. Lopes and L. A. Alexandre. 2018. An overview of blockchain integration with robotics and artificial intelligence. (Sept. 2018). https://arxiv.org/abs/1810.00329v1
[11]
Vukolic M. 2015. The quest for scalable Blockchain fabric: Proof-of-work vs. BFT replication. Springer International Workshop on Open Problems in Network Security (Jan. 2015), 112–125. https://link.springer.com/chapter/10.1007/978-3-319-39028-4_9
[12]
S. Falkner M. Lindauer M. Feurer, K. Eggensperger and F. Hutter. 2019. Practical automated machine learning for the automation challenge. International Workshop on Automatic Machine Learning at ICML (Jan. 2019). https://doi.org/
[13]
T. M. Khoshgoftaar N. Seliya R.Wald M. M. Najafabadi, F. Villanustre and E. Muharemagic. 2015. Deep learning applications and challenges in big data analytics. Journal of Big Data 2, 1 (Feb. 2015). https://doi.org/10.1186/s40537-014-0007-7
[14]
Rock K Kessler S Orsini L Weinhardt C. Mengelkamp E, Garttner J. 2008. Designing microgrid energy markets A case study. the Brooklyn Microgrid. Appl Energy (Jan. 2008). https://doi.org/10.1016/j.apenergy.2017.06.054
[15]
Valentin Robua David Flynna Simone Abramb Dale Geachc David Jenkinsd Peter McCallumd Andrew Peacockd Merlinda Andonia. 2019. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews (Jan. 2019), 143–174. https://doi.org/10.1016/j.rser.2018.10.014
[16]
Abidin A Mustafa MA, Cleemput S. 2016. A local electricity trading market: Security Analysis. In: Proceedings of the IEEE PES Innovation Smart Grid Technology Conference Europe (Jan. 2016). https://doi.org/10.1109/ISGTEurope.2016.7856269
[17]
Gourisetti SNG Mylrea M. 2007. Cybersecurity and optimization in smart ‘autonomous’ buildings. Autonomy and Artificial Intelligence: A Threat or Savior? Springer International Publishing (Jan. 2007), 263–294. https://doi.org/Electronic ISBN: 978-3-319-59719-5
[18]
Neudecker and H. Hartenstein. 2018. Network layer aspects of permission-less Blockchain. IEEE Communications Surveys (Jan. 2018). https://doi.org/10.1109/COMST.2018.2852480
[19]
Nakamoto S. 2008. Bitcoin: A peer-to-peer Electronic cash system. (Jan. 2008). http://bitcoin.org/bitcoin.pdf
[20]
X. Wang J. Li R. Qin S. Wang, Y. Yuan and F.-Y. Wang. [n.d.]. An Overview of Smart Contract: Architecture, Applications, and future trends. ([n. d.]).
[21]
Mylrea M. Gourisetti SNG. 2017. Blockchain for smart grid resilience: Exchanging distributed energy at speed, scale and security. In: IEEE Proceedings of the Resilience Week (RWS) (Jan. 2017), 18–23. https://doi.org/10.1109/RWEEK.2017.8088642
[22]
C. Ahuja T. Baltrušaitis and L.-P. Morency. 2018. Multimodal machine learning: A survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence (Jan. 2018). https://arxiv.org/abs/1705.09406f
[23]
T. Strasser T. Bocek, B. B. Rodrigues and B. Stiller. 2017. Blockchain everywhere-a use-case of Blockchains in the pharma supply-chain. IFIP/IEEE Symposium on Integrated Network and Service Management (IM) (Jan. 2017), 772–777. https://doi.org/
[24]
E. Castelló Ferrer V. Strobel and M. Dorigo. 2018. Managing Byzantine Robots via Blockchain Technology in a swarm robotics collective decision making scenario. Proceedings of the 17th International Conference on Autonomous Agents and Multi-Agent Systems.International Foundation for Autonomous Agents and Multi-agent Systems (Jan. 2018), 541–549. https://dl.acm.org/doi/10.5555/3237383.3237464
[25]
T. Wiegand W. Samek and K.-R. Müller. 2017. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. (Jan. 2017). https://arxiv.org/abs/1708.08296
[26]
C. Carr X. Boyen and T. Haines. 2018. Bitcoin: A peer-to-peer electronic cash system. Graphchain: a Blockchain-free scalable decentralized ledger (May 2018). https://doi.org/

Cited By

View all
  • (2023)Blockchain and cooperative game theory for peer-to-peer energy trading in smart gridsInternational Journal of Electrical Power & Energy Systems10.1016/j.ijepes.2023.109111151(109111)Online publication date: Sep-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICDCN '22: Proceedings of the 23rd International Conference on Distributed Computing and Networking
January 2022
298 pages
ISBN:9781450395601
DOI:10.1145/3491003
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 January 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Blockchain
  2. Consensus Protocol
  3. De-centralization
  4. Renewable Energy
  5. Sustainability
  6. Transaction

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ICDCN '22

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)16
  • Downloads (Last 6 weeks)2
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Blockchain and cooperative game theory for peer-to-peer energy trading in smart gridsInternational Journal of Electrical Power & Energy Systems10.1016/j.ijepes.2023.109111151(109111)Online publication date: Sep-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media