[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3466933.3466941acmotherconferencesArticle/Chapter ViewAbstractPublication PagessbsiConference Proceedingsconference-collections
research-article

Clusters of Brazilian municipalities and the relationship with their fiscal management

Published: 08 July 2021 Publication History

Abstract

The management of municipal finances is crucial in providing quality services and infrastructure to citizens and the availability of data and indicators that provide an individualized view of fiscal management is relatively recent. Therefore, we seek to identify which socioeconomic characteristics of brazilian municipalities appear to have the greatest influence on the FIRJAN Fiscal Management Index (IFGF) for the more than five thousand Brazilian municipalities, as well as to identify homogeneous groups of cities based on such characteristics, using the K-Means method for clustering. Among the main conclusions, we highlight that Brazilian cities are very homogeneous and face the same social vulnerabilities and that the average level of municipal investment does not significantly differ between groups, even when we compare groups with greater socioeconomic disparities.

References

[1]
José Roberto Afonso, Cristóvão Correia, Júlio Ramundo, Maurício David, Erika Araújo, Romulo dos Santos. 1998. Municípios, arrecadação e administração tributária: quebrando tabus. Revista do BNDES, Rio de Janeiro, v. 5, n. 10 (dez. 1998), 3-36. https://web.bndes.gov.br/bib/jspui/handle/1408/11521
[2]
Magno Cirino Barbosa Filho. 2013. Uma avaliação do programa de modernização da administração tributária (PMAT) sobre o esforço fiscal dos municípios (2000 a 2010). Dissertação (Mestrado Profissional em Economia). Universidade de Brasília, Brasília, Brasil.
[3]
M. Emre Celebi, Hassan Kingravib & Patricio Vela. 2013. A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications, Volume 40, Edição 1, 200-210.
[4]
Caio Costa, Marco Aurélio Ferreira, Marcelo José Braga & Luiz Antônio Abrantes. 2012. Disparidades Inter-Regionais e Características dos Municípios do Estado de Minas Gerais. Desenvolvimento em Questão, Ano 10, n. 20, 52-88.
[5]
Manoranjan Dash, Kiseok Choi, Peter Scheuermann & Huan Liu. 2002. Feature Selection for Clustering - A Filter Solution. In Proceedings of the 2002 IEEE International Conference on Data Mining, 2002. https://doi.org/10.1109/icdm.2002.1183893
[6]
Marcelo Doni. 2004. Análise de cluster: métodos hierárquicos e de particionamento. Monografia (Trabalho de Graduação). Universidade Presbiteriana Mackenzie, São Paulo, Brasil.
[7]
Tatiana Escovedo & Adriano Koshiyama. Introdução a Data Science: Algoritmos de Machine Learning e métodos de análise (1ª ed.). Casa do Código, Rio de Janeiro, Rio de Janeiro.
[8]
Federação das Indústrias do Estado do Rio de Janeiro. 2019. Índice Firjan Gestão Fiscal - Edição 2019 – Metodologia. Disponível em: https://firjan.com.br/data/files/88/94/7D/5D/33F0F61053918AE6A8A809C2/IFGF-2019_anexo-metodologico3.pdf. Acessado em julho de 2020.
[9]
Sidney Leal, Sandra Aluísio, Erica Rodrigues, João Marcos Vieira & Elisângela Teixeira. 2019. Métodos de clusterização para a criação de corpus para rastreamento ocular durante a leitura de parágrafos em português. In Proceedings of the 12th Brazilian Symposium in Information and Human Language Technology, October 15-18, 2019, Salvador, Bahia, Brazil.
[10]
Eduardo Ribeiro. 199. Capacidade, eficácia e eficiência tributária no Rio Grande do Sul: municípios. Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brasil.
[11]
Manish Verma, Mauly Srivastava, Neha Chack, Atul Kumar Diswar, Nidhi Gupta. 2012. A Comparative Study of Various Clustering Algorithms in Data Mining. International Journal of Engineering Research and Applications (IJERA), Vol. 2, 3 (May-Jun 2012), 1379-1384.

Index Terms

  1. Clusters of Brazilian municipalities and the relationship with their fiscal management
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image ACM Other conferences
          SBSI '21: Proceedings of the XVII Brazilian Symposium on Information Systems
          June 2021
          453 pages
          ISBN:9781450384919
          DOI:10.1145/3466933
          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          Published: 08 July 2021

          Permissions

          Request permissions for this article.

          Check for updates

          Author Tags

          1. Clustering
          2. Firjan Fiscal Management Index
          3. Municipal Finances

          Qualifiers

          • Research-article
          • Research
          • Refereed limited

          Conference

          SBSI '21

          Acceptance Rates

          Overall Acceptance Rate 181 of 557 submissions, 32%

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 36
            Total Downloads
          • Downloads (Last 12 months)1
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 21 Dec 2024

          Other Metrics

          Citations

          View Options

          Login options

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format.

          HTML Format

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media