[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3462757.3466137acmconferencesArticle/Chapter ViewAbstractPublication PagesicailConference Proceedingsconference-collections
research-article

Process mining-enabled jurimetrics: analysis of a Brazilian court's judicial performance in the business law processing

Published: 27 July 2021 Publication History

Abstract

Improving judicial performance has become increasingly relevant to guarantee access to justice for all, worldwide. In this context, technology-enabled tools to support lawsuit processing emerge as powerful allies to enhance the justice efficiency. Using electronic lawsuit management systems within the courts of justice is a widespread practice, which also leverages production of big data within judicial operation. Some jurimetrics techniques have arisen to evaluate efficiency based on statistical analysis and data mining of data produced by judicial information systems. In this sense, the process mining area offers an innovative approach to analyze judicial data from a process-oriented perspective. This paper presents the application of process mining in a event log derived from a dataset containing business lawsuits from the Court of Justice of the State of Sao Paulo, Brazil - the largest court in the world - in order to analyze judicial performance. Although the results show these lawsuits have an ad hoc sequence flow, process mining analysis have allowed to identify most frequent activities and process bottlenecks, providing insights into the root causes of inefficiencies.

References

[1]
Bruna Armonas Colombo, Pedro Buck, and Vinicius Miana Bezerra. 2017. Challenges When Using Jurimetrics in Brazil---A Survey of Courts. Future Internet 9, 4 (10 2017), 68.
[2]
Associação Brasileira de Jurimetria. 2016. Estudo sobre varas empresariais na Comarca de São Paulo. Technical Report. Associação Brasileira de Jurimetria. 20 pages. https://abj.org.br/pdf/ABJ_varas_empresariais_tjsp.pdf (in Portuguese).
[3]
Associação Brasileira de Jurimetria. 2020. Justiça Pesquisa - Formas Alternativas de Gestão Processual: a especialização de varas e a unificação de serventias. Technical Report. Conselho Nacional de Justiça, Brasília. 126 pages. https://www.cnj.jus.br/wp-content/uploads/2020/08/Justica-Pesquisa_Relatorio_ABJ_2020-08-21_1.pdf (in Portuguese).
[4]
Daniel L. Chen. 2019. Judicial analytics and the great transformation of American Law. Artificial Intelligence and Law 27, 1 (3 2019), 15--42.
[5]
Conselho Nacional de Justiça. 2020. Justiça em Números 2020: anobase 2019. Technical Report. Conselho Nacional de Justiça, Brasília. 267 pages. https://www.cnj.jus.br/wp-content/uploads/2020/08/WEB-V3-Justica-em-Numeros-2020-atualizado-em-25-08-2020.pdf (in Portuguese).
[6]
Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. 2018. Fundamentals of Business Process Management (2 ed.). Springer, Berlin. 527 pages.
[7]
Theodore Eisenberg. 2011. The origins, nature, and promise of empirical legal studies and a response to concerns. University of Illinois Law Review 2011, 5 (2011), 1713--1738.
[8]
Adalmir de Oliveira Gomes and Tomás de Aquino Guimarães. 2013. Desempenho no judiciário. Conceituação, estado da arte e agenda de pesquisa. Revista de Administracao Publica 47, 2 (3 2013), 379--401. (in Portuguese).
[9]
Bráulio Gusmão. 2021. Mineração de processos e gestão de casos no judiciário. In Inteligência Artificial e Direito Processual: os impactos da virada tecnológica no direito processual (2 ed.), Dierle Nunes, Paulo Henrique dos Santos Lucon, and Erik Navarro Workart (Eds.). JusPodivm, Salvador, 589--594. (in Portuguese).
[10]
International Consortium for Court and Excellence. 2020. Global Measures of Court Performance. Technical Report. Secretariat for the International Consortium for Court Excellence, Sydney, Australia. 112 pages. http://www.courtexcellence.com/resources/global-measures
[11]
Lee Loevinger. 1948. Jurimetrics-The Next Step Forward. Minnesota Law Review 33, 5 (1948), 455--493.
[12]
Marcos Maia and Cicero Aparecido Bezerra. 2020. Bibliometric analysis of scientific articles on jurimetry published in Brazil. Revista Digital de Biblioteconomia e Ciência da Informação 18 (2020).
[13]
Oleg Metsker, Egor Trofimov, Sergey Sikorsky, and Sergey Kovalchuk. 2019. Text and data mining techniques in judgment open data analysis for administrative practice control. In Communications in Computer and Information Science, Vol. 947. Springer, Cham, 169--180.
[14]
Tom M. Mitchell. 1997. Machine Learning. McGraw-Hill Science/Engineering/Math. 432 pages.
[15]
Dierle Nunes. 2021. A technological shift in procedural law (from automation to transformation): Can legal procedure be adapted through technology? In Inteligência Artificial e Direito Processual: os impactos da virada tecnológica no direito processual (2 ed.), Dierle Nunes, Paulo Henrique dos Santos Lucon, and Erik Navarro Workart (Eds.). JusPodivm, Salvador, 55--78.
[16]
Marcelo Guedes Nunes. 2019. Jurimetria: como a estatística pode reinventar o Direito (2 ed.). Revista dos Tribunais, São Paulo. 192 pages. (in Portuguese).
[17]
Giuliana Palumbo, Giulia Giupponi, Luca Nunziata, and Juan Mora-Sanguinetti. 2013. Judicial performance and its determinants: a cross-country perspective. OECD Economic Policy Papers 5 (2013), 1--38.
[18]
Shahmin Sharafat, Zara Nasar, and Syed Waqar Jaffry. 2019. Data mining for smart legal systems. Computers and Electrical Engineering 78 (9 2019), 328--342.
[19]
Universidade de São Paulo. 2019. Justiça Pesquisa - Mediações e Conciliações Avaliadas Empiricamente: jurimetria para proposição de ações eficientes. Technical Report. Conselho Nacional de Justiça, Brasília. 193 pages. https://www.cnj.jus.br/wp-content/uploads/2011/02/e1d2138e482686bc5b66d18f0b0f4b16.pdf (in Portuguese).
[20]
Wil M. P. van der Aalst. 2016. Process mining: Data science in Action (2 ed.). Springer, Berlin. 467 pages.
[21]
Maikel L. van Eck, Xixi Lu, Sander J. J. Leemans, and Wil M. P. van der Aalst. 2015. PM2: A process mining project methodology. In Lecture Notes in Computer Science, Vol. 9097. Springer, Cham, 297--313.
[22]
Caio Castelliano de Vasconcelos, Eduardo Watanabe de Oliveira, Henrique Pais da Costa, and Tomas de Aquino Guimaraes. 2018. Tempo de Processos Judiciais na Justiça Federal do Brasil. In XLII Encontro da ANPAD. Curitiba, 1--16. http://www.anpad.org.br/abrir_pdf.php?e=MjQ1NzA= (in Portuguese).

Cited By

View all
  • (2025)Process Mining on a Public Procurement Dataset: A Case StudyMachine Learning and Principles and Practice of Knowledge Discovery in Databases10.1007/978-3-031-74630-7_35(477-492)Online publication date: 8-Feb-2025
  • (2025)Variants Analysis in Judicial Trials: Challenges and Initial ResultsMachine Learning and Principles and Practice of Knowledge Discovery in Databases10.1007/978-3-031-74630-7_30(425-438)Online publication date: 8-Feb-2025
  • (2024)Challenges in AI-supported Process Analysis in the Italian Judicial System: what After Digitalization?Digital Government: Research and Practice10.1145/36300255:1(1-10)Online publication date: 12-Mar-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ICAIL '21: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law
June 2021
319 pages
ISBN:9781450385268
DOI:10.1145/3462757
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. administration of justice
  2. business law
  3. business process management
  4. judicial performance
  5. jurimetrics
  6. legal informatics
  7. procedural law
  8. process mining

Qualifiers

  • Research-article

Conference

ICAIL '21
Sponsor:

Acceptance Rates

Overall Acceptance Rate 69 of 169 submissions, 41%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)57
  • Downloads (Last 6 weeks)6
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Process Mining on a Public Procurement Dataset: A Case StudyMachine Learning and Principles and Practice of Knowledge Discovery in Databases10.1007/978-3-031-74630-7_35(477-492)Online publication date: 8-Feb-2025
  • (2025)Variants Analysis in Judicial Trials: Challenges and Initial ResultsMachine Learning and Principles and Practice of Knowledge Discovery in Databases10.1007/978-3-031-74630-7_30(425-438)Online publication date: 8-Feb-2025
  • (2024)Challenges in AI-supported Process Analysis in the Italian Judicial System: what After Digitalization?Digital Government: Research and Practice10.1145/36300255:1(1-10)Online publication date: 12-Mar-2024
  • (2024)Process reengineering and public value creation: using process mining in courtsInternational Journal of Public Sector Management10.1108/IJPSM-02-2024-0049Online publication date: 9-Dec-2024
  • (2024)Investigation of lawsuit process duration using machine learning and process miningDiscover Analytics10.1007/s44257-024-00015-02:1Online publication date: 15-Jul-2024
  • (2023)Investigating the Usability and Comprehensibility of Process Mining Tools Within an Application-Specific Context2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC)10.1109/SMC53992.2023.10393888(4337-4342)Online publication date: 1-Oct-2023
  • (2023)An Approach for Analysing Law Processes based on Hierarchical Activities and Clustering2023 IEEE Latin American Conference on Computational Intelligence (LA-CCI)10.1109/LA-CCI58595.2023.10409389(1-6)Online publication date: 29-Oct-2023
  • (2023)Unveiling Bottlenecks in Logistics: A Case Study on Process Mining for Root Cause Identification and Diagnostics in an Air Cargo TerminalService-Oriented Computing10.1007/978-3-031-48424-7_21(291-307)Online publication date: 20-Nov-2023
  • (2023)A Method for Bottleneck Detection, Prediction, and Recommendation Using Process Mining TechniquesE-Business and Telecommunications10.1007/978-3-031-36840-0_7(118-136)Online publication date: 22-Jul-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media