[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3452143.3465526acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article
Open access

Computing Grothendieck Point Residues via Solving Holonomic Systems of First Order Partial Differential Equations

Published: 18 July 2021 Publication History

Abstract

Grothendieck point residue is considered in the context of symbolic computation. Based on the theory of holonomic D-modules associated to a local cohomology class, a new effective method is given for computing Grothendieck point residue mappings. A basic strategy of our approach is the use of holonomic systems of first order linear partial differential equations. The resulting algorithm is easy to implement and can also be used to compute Grothendieck point residues in an effective manner.

References

[1]
A. Altman and S. Kleiman. 1970. Introduction to Grothendieck Duality Theory, Lecture Notes in Math. textbf146. Springer.
[2]
V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko. 1985. Singularities of differentiable maps, Vol. I, Monographs in Math. 82. Birkhäuser.
[3]
P. F. Baum and R. Bott. 1972. Singularities of holomorphic foliations. J. Differential Geometry, Vol. 7 (1972), 279--342.
[4]
J. E. Björk. 2004. Residues and D-modules. In The legacy of Niels Henrik Abel. Springer, 605--651.
[5]
J. P. Brasselet, J. Seade, and T. Suwa. 2009. Vector Fields on Singular Varieties, Lecture Notes in Math. textbf1987. Springer.
[6]
M. A. Dela Rosa. 2018. On a lemme of Varchenko and higher bilinear forms induced by Grothendieck duality on the Milnor algebra of an isolated hypersurface singularity. Bull. Braz. Math. Soc., Vol. 49 (2018), 715--741.
[7]
M. Elkadi and B. Mourrain. 2007. Introduction à la Résolution des Systèmes Polynomiaux. Springer.
[8]
P. Griffiths. 1976. Variations on a theorem of Abel. Invent. Math., Vol. 35 (1976), 321--390.
[9]
P. Griffiths and J. Harris. 1978. Principles of Algebraic Geometry. Wiley Interscience.
[10]
A. Grothendieck. 1967. Local Cohomology, notes by R. Hartshorne, Lecture Notes in Math., text41. Springer.
[11]
R. Hartshorne. 1966. Residues and Duality. Lecture Notes in Math. 20. Springer.
[12]
C. Heltling. 2002. Frobenius Manifolds and Moduli Spaces for Singularities. Cambridge Univ. Press.
[13]
S. B. Iyengar, G. J. Leuschke, A. Leykin, C. Miller, E. Miller, A. K. Singh, and U. Walther. 2002. Twenty-Four Hours of Local Cohomology. Cambridge Univ. Press.
[14]
M. Kashiwara. 1974/75. On the maximally overdetermined system of linear differential equations I. Publ. Res. Inst. Math. Sci., Vol. 10 (1974/75), 563--579.
[15]
M. Kashiwara. 1978. On holonomic systems of linear differential equations II. Invent. Math., Vol. 49 (1978), 121--135.
[16]
M. Kashiwara and T. Kawai. 1981. On holonomic systems of micro-differential equations III - Systems with regular singularities. Publ. Res. Inst. Math. Sci., Vol. 17 (1981), 813--979.
[17]
E. Kunz. 2009. Residues and Duality for Projective Algebraic Varieties. Univ. Lecture Series 47. AMS.
[18]
A. M. Kytmanov. 1988. A transformation formula for Grothendieck residues and some of its applications. Siberian Math. J., Vol. 169 (1988), 495--499.
[19]
K. Nabeshima and S. Tajima. 2015. On the computation of algebraic local cohomology classes associated with semi-quasihomogeneous singularities. Advanced Studies in Pure Mathematics, Vol. 66 (2015), 143--159.
[20]
K. Nabeshima and S. Tajima. 2016. Computing Tjurina stratifications of μ-constant deformations via parametric local cohomology systems. Applicable Algebra in Engineering, Computation and Computing, Vol. 27 (2016), 451--467.
[21]
K. Nabeshima and S. Tajima. 2017. Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. Journal of Symbolic Computation, Vol. 82 (2017), 91--122.
[22]
K. Nabeshima and S. Tajima. 2021. Methods for computing b-functions associated with μ-constant deformations -- Case of inner modality two --. Journal of Symbolic Computation, Vol. 75 (2021), 55--70.
[23]
Y. Nakamura and S. Tajima. 2001 a. Algebraic local cohomology classes in unimodal exceptional singularities (in Japanese). Sūrikaisekikenkyūsho Kōkyūroku, Vol. 1211 (2001), 155--165.
[24]
Y. Nakamura and S. Tajima. 2001 b. Construction methods for holonomic systems that satisfy algebraic local cohomology classes (in Japanese). Sūrikaisekikenkyūsho Kōkyūroku, Vol. 1199 (2001), 70--89.
[25]
Y. Nakamura and S. Tajima. 2005. Unimodal singularities and differential operators. Séminaire et Congrès, Vol. 10 (2005), 191--208.
[26]
Y. Nakamura and S. Tajima. 2007. On weighted-degrees for algebraic local cohomologies associated with semiquasihomogeneous singularities. Advanced Studies in Pure Mathematics, Vol. 46 (2007), 105--117.
[27]
M. Noro and T. Takeshima. 1992. Risa/Asir- A computer algebra system. In International Symposium on Symbolic and Algebraic Computation. ACM, 387--396.
[28]
N. R. O'Brian. 1977 a. Zeros of holomorphic vector fields and Grothendieck duality theory. Trans. AMS., Vol. 229 (1977), 289--306.
[29]
N. R. O'Brian. 1977 b. Zeros of holomorphic vector fields and Grothendieck duality theory and applications to the holomorphic fixed-point formula of Atiyah and Bott. Ph.D. Dissertation. Univ. Warwick.
[30]
K. Ohara and S. Tajima. 2020. An algorithm for computing Grothendieck local residues II - general case -. Mathematics in Computer Science, Vol. 14 (2020), 483--496.
[31]
F. Pham. 1979. Singularités des systèmes différentiels de Gauss-Manin. Progress in Math., 2. Birkhäuser.
[32]
S. Saito. 1983. The higher residue pairings KF(k) for a family of hypersurface singular points. In Symposia in Pure Math. 40, Part 2 . Amer. Math. Soc, 441--463.
[33]
T. Suwa. 1988. Indices of Vector Fields and Residues of Singular Holomorphic Foliations. Hermann.
[34]
T. Suwa. 203. Residues of Chern classes. J. Math. Soc. Japan, Vol. 55 (203), 269--287.
[35]
S. Tajima. 2005 a. Algorithms for computing Grothendieck local residues --improvement with a rescue step-- (in Japanese). Sūrikaisekikenkyūsho Kōkyūroku, Vol. 1233 (2005), 67--81.
[36]
S. Tajima. 2005 b. Noether operators and an algorithm for computing multivariate local residues, (in Japanes). Sūrikaisekikenkyūsho Kōkyūroku, Vol. 1431 (2005), 123--136.
[37]
S. Tajima and K. Nabeshima. [n.d.]. An effective method for computing Grothendieck point residue mappings. ( [n.,d.]). arXiv:2011.09092.
[38]
S. Tajima and Y. Nakamura. 2001. Local cohomology classes and dual bases for quasihomogeneous isolated singularities. In Eighth International Conference on Several Complex Variables, in Finite or Infinite Dimensional Complex Analysis 2000, China. Shandong Science and Technology Press, 213--218.
[39]
S. Tajima and Y. Nakamura. 2005 a. Algebraic local cohomology classes attached to quasi-homogeneous hypersurface isolated singularities. Publ. Res. Inst. Math. Sci., Vol. 41 (2005), 1--10.
[40]
S. Tajima and Y. Nakamura. 2005 b. Computational aspects of Grothendieck local residues. Séminaires et Congrès, Soc. Math. France., Vol. 10 (2005), 287--305.
[41]
S. Tajima and Y. Nakamura. 2009. Annihilating ideals for an algebraic local cohomology class. Journal of Symbolic Computation, Vol. 44 (2009), 435--448.
[42]
S. Tajima and Y. Nakamura. 2012. Algebraic local cohomology classes attached to unimodal singularities. Publ. Res. Inst. Math. Sci., Vol. 48 (2012), 21--43.
[43]
S. Tajima, Y. Nakamura, and K. Nabeshima. 2009. Standard bases and algebraic local cohomology for zero dimensional ideals. Advanced Studies in Pure Mathematics, Vol. 56 (2009), 341--361.
[44]
S. Tajima, T. Oaku, and Y. Nakamura. 1998. Multidimensional residue calculus and holonomic D-modules. Sūrikaisekikenkyūsho Kōkyūroku, Vol. 1033 (1998), 59--70.
[45]
Y. L. Tong. 1973. Integral representation formulae and Grothendieck residue symbol. Amer. J. Math., Vol. 95 (1973), 904--917.
[46]
A. K. Tsikh. 1992. Multidimensional Residues and Their Application. Trans. of Math. Monographes 103. Amer. Mathematical Society.
[47]
A. N. Varchenko. 1986. On the local residue and the intersection form on the vanishing cohomology. Math. USSR Izvestiya, Vol. 26 (1986), 31--52.

Index Terms

  1. Computing Grothendieck Point Residues via Solving Holonomic Systems of First Order Partial Differential Equations

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '21: Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation
    July 2021
    379 pages
    ISBN:9781450383820
    DOI:10.1145/3452143
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 18 July 2021

    Check for updates

    Author Tags

    1. grothendieck residue
    2. holonomic d-modules
    3. local cohomology

    Qualifiers

    • Research-article

    Funding Sources

    • JSPS Grant-in-Aid for Scientific Research (C) 18K03320
    • JSPS Grant-in-Aid for Scientific Research (C) 18K03214

    Conference

    ISSAC '21
    Sponsor:
    ISSAC '21: International Symposium on Symbolic and Algebraic Computation
    July 18 - 23, 2021
    Virtual Event, Russian Federation

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 204
      Total Downloads
    • Downloads (Last 12 months)86
    • Downloads (Last 6 weeks)15
    Reflects downloads up to 08 Mar 2025

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media