[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3330393.3330421acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmsspConference Proceedingsconference-collections
research-article

Graph Based Image Matching Using the Fusion of Several Kinds of Features

Published: 10 May 2019 Publication History

Abstract

We exploit the image saliency, grayscale and RGB information to find feature correspondence based on a graph matching technique. We consider these saliency features, grayscale and average RGB values along with distance information for extracted image features by using a detector-descriptor combination of MSER detector and SIFT Descriptor. Three different affinity matrices are introduced by utilizing single pixel values collected by using the feature vector coordinates from three different forms of the same images. Considerable improvements in image matching performance are obtained while these affinity matrices are combined separately with the distance-based affinity matrix.

References

[1]
Le Moigne, J., Campbell, W. J., & Cromp, R. F. (2002). An automated parallel image registration technique based on the correlation of wavelet features. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1849--1864.
[2]
Inglada, J., Muron, V., Pichard, D., & Feuvrier, T. (2007). Analysis of artifacts in subpixel remote sensing image registration. IEEE Transactions on Geoscience and Remote Sensing, 45(1), 254--264.
[3]
Liang, J., Liu, X., Huang, K., Li, X., Wang, D., & Wang, X. (2014). Automatic registration of multisensor images using an integrated spatial and mutual information (SMI) metric. IEEE transactions on geoscience and remote sensing, 52(1), 603--615.
[4]
Pang, S., Xue, J., Tian, Q., & Zheng, N. (2014). Exploiting local linear geometric structure for identifying correct matches. Computer Vision and Image Understanding, 128, 51--64.
[5]
Ma, J., Ma, Y., Zhao, J., & Tian, J. (2015). Image feature matching via progressive vector field consensus. IEEE Signal Processing Letters, 22(6), 767--771.
[6]
Liu, H., & Yan, S. (2010, June). Common visual pattern discovery via spatially coherent correspondences. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 1609--1616). IEEE.
[7]
Cho, M., Lee, J., & Lee, K. M. (2010, September). Reweighted random walks for graph matching. In European conference on Computer vision (pp. 492--505). Springer, Berlin, Heidelberg.
[8]
Wu, J., Shen, H., Li, Y. D., Xiao, Z. B., Lu, M. Y., & Wang, C. L. (2013). Learning a hybrid similarity measure for image retrieval. Pattern Recognition, 46(11), 2927--2939.
[9]
Duchenne, O., Joulin, A., & Ponce, J. (2011, November). A graph-matching kernel for object categorization. In 2011 International Conference on Computer Vision (pp. 1792--1799). IEEE.
[10]
Berg, A. C., Berg, T. L., & Malik, J. (2005). Shape matching and object recognition using low distortion correspondences (pp. 26--33). IEEE.
[11]
Chen, H. T., Lin, H. H., & Liu, T. L. (2001). Multi-object tracking using dynamical graph matching. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001 (Vol. 2, pp. II--II). IEEE.
[12]
Matas, J., Chum, O., Urban, M., & Pajdla, T. (2004). Robust wide-baseline stereo from maximally stable extremal regions. Image and vision computing, 22(10), 761--767.
[13]
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91--110.
[14]
Mikolajczyk, K., & Schmid, C. (2004). Scale & affine invariant interest point detectors. International journal of computer vision, 60(1), 63--86.
[15]
Lowe, D. G. (1999, September). Object recognition from local scale-invariant features. In iccv (Vol. 99, No. 2, pp. 1150--1157).
[16]
Palmer, S. E. (1999). Vision science: Photons to phenomenology. MIT press.
[17]
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 97--136.
[18]
Achanta, R., Hemami, S., Estrada, F., & Süsstrunk, S. (2009). Frequency-tuned salient region detection. In IEEE international conference on computer vision and pattern recognition (CVPR 2009) (No. CONF, pp. 1597--1604).
[19]
Borji, A., & Itti, L. (2012, June). Exploiting local and global patch rarities for saliency detection. In 2012 IEEE conference on computer vision and pattern recognition (pp. 478--485). IEEE.
[20]
Cheng, M. M., Mitra, N. J., Huang, X., Torr, P. H., & Hu, S. M. (2015). Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3), 569--582.
[21]
Gao, D., Mahadevan, V., & Vasconcelos, N. (2008). The discriminant center-surround hypothesis for bottom-up saliency. In Advances in neural information processing systems (pp. 497--504).
[22]
Goferman, S., Zelnik-Manor, L., & Tal, A. (2012). Context-aware saliency detection. IEEE transactions on pattern analysis and machine intelligence, 34(10), 1915--1926.
[23]
Klein, D. A., & Frintrop, S. (2011, November). Center-surround divergence of feature statistics for salient object detection. In 2011 International Conference on Computer Vision (pp. 2214--2219). IEEE.
[24]
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., & Shum, H. Y. (2011). Learning to detect a salient object. IEEE Transactions on Pattern analysis and machine intelligence, 33(2), 353--367.
[25]
Lu, Y., Zhang, W., Lu, H., & Xue, X. (2011, November). Salient object detection using concavity context. In 2011 International Conference on Computer Vision (pp. 233--240). IEEE.
[26]
Perazzi, F., Krähenbühl, P., Pritch, Y., & Hornung, A. (2012, June). Saliency filters: Contrast based filtering for salient region detection. In 2012 IEEE conference on computer vision and pattern recognition (pp. 733--740). IEEE.
[27]
Navalpakkam, V., & Itti, L. (2006). An integrated model of top-down and bottom-up attention for optimizing detection speed. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06) (Vol. 2, pp. 2049--2056). ieee.
[28]
Liu, Z., Shi, R., Shen, L., Xue, Y., Ngan, K. N., & Zhang, Z. (2012). Unsupervised salient object segmentation based on kernel density estimation and two-phase graph cut. IEEE Transactions on Multimedia, 14(4), 1275--1289.
[29]
Huang, S., Wang, W., & Zhang, H. (2014, October). Retrieving images using saliency detection and graph matching. In 2014 IEEE International Conference on Image Processing (ICIP)(pp. 3087--3091). IEEE.
[30]
Cho, M., Lee, J., & Lee, K. M. (2009, September). Feature correspondence and deformable object matching via agglomerative correspondence clustering. In 2009 IEEE 12th International Conference on Computer Vision (pp. 1280--1287). IEEE.
[31]
Qin, Y., Feng, M., Lu, H., & Cottrell, G. W. (2018). Hierarchical cellular automata for visual saliency. International Journal of Computer Vision, 1--20.
[32]
Leordeanu, M., & Hebert, M. (2005, October). A spectral technique for correspondence problems using pairwise constraints. In Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1 (Vol. 2, pp. 1482--1489). IEEE.
[33]
Jiang, B., Tang, J., Ding, C., & Luo, B. (2015, March). A local sparse model for matching problem. In Twenty-Ninth AAAI Conference on Artificial Intelligence.
[34]
Cour, T., Srinivasan, P., & Shi, J. (2007). Balanced graph matching. In Advances in Neural Information Processing Systems (pp. 313--320).
[35]
Albarelli, A., Bulo, S. R., Torsello, A., & Pelillo, M. (2009, September). Matching as a non-cooperative game. In 2009 IEEE 12th International Conference on Computer Vision (pp. 1319--1326). IEEE.
[36]
Jiang, Bo, Jin Tang, Xiaochun Cao, and Bin Luo. "Lagrangian relaxation graph matching." Pattern Recognition 61 (2017): 255--265.

Cited By

View all
  • (2022)Cross-graph reference structure based pruning and edge context information for graph matchingInformation Sciences10.1016/j.ins.2022.10.065Online publication date: Oct-2022

Index Terms

  1. Graph Based Image Matching Using the Fusion of Several Kinds of Features

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICMSSP '19: Proceedings of the 2019 4th International Conference on Multimedia Systems and Signal Processing
    May 2019
    213 pages
    ISBN:9781450371711
    DOI:10.1145/3330393
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    In-Cooperation

    • Shenzhen University: Shenzhen University
    • Sun Yat-Sen University

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 10 May 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Feature correspondence
    2. affinity matrix
    3. image matching
    4. random walks
    5. saliency

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    Conference

    ICMSSP 2019

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 01 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Cross-graph reference structure based pruning and edge context information for graph matchingInformation Sciences10.1016/j.ins.2022.10.065Online publication date: Oct-2022

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media