[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3326229.3326268acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Change of Basis for m-primary Ideals in One and Two Variables

Published: 08 July 2019 Publication History

Abstract

Following recent work by van der Hoeven and Lecerf (ISSAC 2017), we discuss the complexity of linear mappings, called untangling and \emphtangling by those authors, that arise in the context of computations with univariate polynomials. We give a slightly faster tangling algorithm and discuss new applications of these techniques. We show how to extend these ideas to bivariate settings, and use them to give bounds on the arithmetic complexity of certain algebras.

References

[1]
A. V. Aho, K. Steiglitz, and J. D. Ullman. 1975. Evaluating polynomials at fixed sets of points. SIAM J. Comp., Vol. 4, 4 (1975), 533--539.
[2]
M. E. Alonso, E. Becker, M.-F. Roy, and T. Wörmann. 1996. Zeroes, multiplicities and idempotents for zerodimensional systems. In MEGA'94 . Birkh"auser, 1--15.
[3]
P. Aubry, D. Lazard, and M. Moreno Maza. 1999. On the theories of triangular sets. J. Symb. Comput.C, Vol. 28, 1,2 (1999), 45--124.
[4]
J. Berthomieu, B. Boyer, and J.-C. Faugè re. 2017. Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences. J. Symb. Comput., Vol. 83 (2017), 36--67.
[5]
A. Bostan, X. Caruso, G. Christol, and P. Dumas. 2018. Fast coefficient computation for algebraic power series in positive characteristic. In ANTS-XIII . Mathematical Sciences Publishers.
[6]
A. Bostan, C. Jeannerod, C. Mouilleron, and É. Schost. 2017. On matrices with displacement structure: generalized operators and faster algorithms. SIAM J. Matrix Anal. Appl., Vol. 38, 3 (2017), 733--775.
[7]
A. Bostan, G. Lecerf, and É. Schost. 2003. Tellegen's principle into practice. In ISSAC'03. ACM, 37--44.
[8]
R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. 1980. Fast solution of Toeplitz systems of equations and computation of Padé approximants. J. of Algorithms, Vol. 1, 3 (1980), 259--295.
[9]
J. Canny. 1990. Generalised characteristic polynomials. J. Symb. Comput., Vol. 9 (1990), 241--250.
[10]
J. Canny, E. Kaltofen, and Y. Lakshman. 1989. Solving systems of non-linear polynomial equations faster. In ISSAC'89. ACM, 121--128.
[11]
M. F. I. Chowdhury, C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. 2015. Faster algorithms for multivariate interpolation with multiplicities and simultaneous polynomial approximations. IEEE Transactions on Information Theory, Vol. 61, 5 (2015), 2370--2387.
[12]
D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic progressions. J. Symb. Comput., Vol. 9, 3 (1990), 251--280.
[13]
X. Dahan. 2017. GCD modulo a primary triangular set of dimension zero. In ISSAC'17. ACM, 109--116.
[14]
L. De Feo and É. Schost. 2012. Fast arithmetics in Artin-Schreier towers over finite fields. J. Symb. Comput., Vol. 47, 7 (2012), 771--792.
[15]
D. Eisenbud. 1996. Commutative Algebra with a view toward Algebraic Geometry . Number 150 in GTM. Springer.
[16]
C. M. Fiduccia. 1985. An efficient formula for linear recurrences. SIAM J. Comput., Vol. 14, 1 (1985), 106--112.
[17]
J. Gathen and J. Gerhard. 2013. Modern Computer Algebra third ed.). Cambridge University Press, Cambridge.
[18]
J. von zur Gathen and V. Shoup. 1992. Computing Frobenius maps and factoring polynomials. Computational Complexity, Vol. 2, 3 (1992), 187--224.
[19]
M. Giesbrecht. 1995. Nearly optimal algorithms for canonical matrix forms. SIAM J. Comput., Vol. 24, 5 (1995), 948--969.
[20]
M. Giusti and J. Heintz. 1993. La détermination des points isolés et de la dimension d'une variété peut se faire en temps polynomial. In Computational algebraic geometry and commutative algebra, Vol. XXXIV. 216--256.
[21]
J. D. Hauenstein, B. Mourrain, and A. Szanto. 2017. On deflation and multiplicity structure. J. Symb. Comput., Vol. 83 (2017), 228--253.
[22]
J. van der Hoeven and G. Lecerf. 2017. Composition modulo powers of polynomials. In ISSAC'17. ACM, 445--452.
[23]
M. Kaminski, D.G. Kirkpatrick, and N.H. Bshouty. 1988. Addition requirements for matrix and transposed matrix products. J. Algorithms, Vol. 9, 3 (1988), 354--364.
[24]
D. Lazard. 1985. Ideal bases and primary decomposition: case of two variables. J. Symbolic Comput., Vol. 1, 3 (1985), 261--270.
[25]
F. Le Gall. 2014. Powers of tensors and fast matrix multiplication. In ISSAC'14. ACM, 296--303.
[26]
R. Lebreton, E. Mehrabi, and É. Schost. 2013. On the complexity of solving bivariate systems: the case of non-singular solutions. In ISSAC'13 . ACM, 251--258.
[27]
F. S. Macaulay. 1916. The Algebraic Theory of Modular Systems .Cambridge University Press.
[28]
M. G. Marinari, H. M. Möller, and T. Mora. 1996. On multiplicities in polynomial system solving. Trans. Amer. Math. Soc., Vol. 348, 8 (1996), 3283--3321.
[29]
E. Mehrabi and É . Schost. 2016. A softly optimal Monte Carlo algorithm for solving bivariate polynomial systems over the integers. J. Complexity, Vol. 34 (2016), 78--128.
[30]
V. Neiger, H. Rahkooy, and É. Schost. 2017. Algorithms for zero-dimensional ideals using linear recurrent sequences. In CASC'17 . Springer, 313--328.
[31]
A. Ranum. 1911. The general term of a recurring series. Bull. Amer. Math. Soc., Vol. 17, 9 (1911), 457--461.
[32]
F. Rouillier. 1999. Solving zero-dimensional systems through the Rational Univariate Representation. AAECC, Vol. 9, 5 (1999), 433--461.
[33]
V. Shoup. 1994. Fast construction of irreducible polynomials over finite fields. J. Symb. Comput., Vol. 17, 5 (1994), 371--391.
[34]
V. Shoup. 1999. Efficient computation of minimal polynomials in algebraic extensions of finite fields. In ISSAC'99. ACM, 53--58.
[35]
Joris Van Der Hoeven and Robin Larrieu. 2018. Fast reduction of bivariate polynomials with respect to sufficiently regular Gröbner bases. (2018).
[36]
W. T. Wu. 1986. On zeros of algebraic equations -- an application of Ritt principle. Kexue Tongbao, Vol. 31 (1986), 1--5.

Cited By

View all
  • (2024) An -adic algorithm for bivariate Gröbner bases Journal of Symbolic Computation10.1016/j.jsc.2024.102389(102389)Online publication date: Sep-2024
  • (2024)Bivariate polynomial reduction and elimination ideal over finite fieldsJournal of Symbolic Computation10.1016/j.jsc.2024.102367(102367)Online publication date: Jul-2024
  • (2023)p-adic algorithm for bivariate Gröbner basesProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597086(508-516)Online publication date: 24-Jul-2023

Index Terms

  1. Change of Basis for m-primary Ideals in One and Two Variables

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ISSAC '19: Proceedings of the 2019 International Symposium on Symbolic and Algebraic Computation
    July 2019
    418 pages
    ISBN:9781450360845
    DOI:10.1145/3326229
    • General Chairs:
    • James Davenport,
    • Dongming Wang,
    • Program Chair:
    • Manuel Kauers,
    • Publications Chair:
    • Russell Bradford
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 July 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. algorithms
    2. complexity
    3. polynomials

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    ISSAC '19

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024) An -adic algorithm for bivariate Gröbner bases Journal of Symbolic Computation10.1016/j.jsc.2024.102389(102389)Online publication date: Sep-2024
    • (2024)Bivariate polynomial reduction and elimination ideal over finite fieldsJournal of Symbolic Computation10.1016/j.jsc.2024.102367(102367)Online publication date: Jul-2024
    • (2023)p-adic algorithm for bivariate Gröbner basesProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597086(508-516)Online publication date: 24-Jul-2023
    • (2023)Chinese Remainder Theorem for bivariate lexicographic Gröbner basesProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597082(208-217)Online publication date: 24-Jul-2023

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media