[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3326229.3326235acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article
Public Access

Effective Certification of Approximate Solutions to Systems of Equations Involving Analytic Functions

Published: 08 July 2019 Publication History

Abstract

We develop algorithms for certifying an approximation to a nonsingular solution of a square system of equations built from univariate analytic functions. These algorithms are based on the existence of oracles for evaluating basic data about the input analytic functions. One approach for certification is based on α-theory while the other is based on the Krawczyk generalization of Newton's iteration. We show that the necessary oracles exist for \Dfinite\ functions and compare the two algorithmic approaches for this case using our software implementation in \sage.

References

[1]
Tulay Ayyildiz Akoglu, Jonathan D Hauenstein, and Agnes Szanto. 2018. Certifying solutions to overdetermined and singular polynomial systems over Q. J. Symbolic Comput, Vol. 84 (2018), 147--171.
[2]
Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap. 2016. Complexity Analysis of Root Clustering for a Complex Polynomial. In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation (ISSAC '16). ACM, New York, NY, USA, 71--78.
[3]
A. Benoit, M. Joldecs, and M. Mezzarobba. 2017. Rigorous uniform approximation of D-finite functions using Chebyshev expansions. Math. Comp., Vol. 86, 305 (2017), 1303--1341.
[4]
L. Blum, F. Cucker, M. Shub, and S. Smale. 2012. Complexity and real computation .Springer Science & Business Media.
[5]
S. Bozóki, T. L. Lee, and L. Rónyai. 2015. Seven mutually touching infinite cylinders. Comput. Geom., Vol. 48, 2 (2015), 87--93.
[6]
D. V. Chudnovsky and G. V. Chudnovsky. 1990. Computer algebra in the service of mathematical physics and number theory. Computers in mathematics, Vol. 125 (1990), 109.
[7]
A. Gabrielov and N. Vorobjov. 2004. Complexity of computations with Pfaffian and Noetherian functions. Normal forms, bifurcations and finiteness problems in differential equations (2004), 211--250.
[8]
J. D. Hauenstein and V. Levandovskyy. 2017. Certifying solutions to square systems of polynomial-exponential equations. J. Symbolic Comput., Vol. 79 (2017), 575--593.
[9]
J. D. Hauenstein and F. Sottile. 2011. alphaCertified: Software for certifying numerical solutions to polynomial equations. Available at math.tamu.edu/ sottile/research/stories/alphaCertified (2011).
[10]
J. D. Hauenstein and F. Sottile. 2012. Algorithm 921: alphaCertified: certifying solutions to polynomial systems. ACM Trans. Math. Software, Vol. 38, 4 (2012), 28.
[11]
T. Hibi. 2014. Gröbner bases: Statistics and software systems .Springer Science & Business Media.
[12]
Wolfram Research, Inc. 2018. Mathematica, Version 11.3. Champaign, IL.
[13]
A. Khovanskii. 1991. Fewnomials. Vol. 88. American Mathematical Soc.
[14]
R. Krawczyk. 1969. Newton-algorithmen zur bestimmung von nullstellen mit fehlerschranken. Computing, Vol. 4, 3 (1969), 187--201.
[15]
S. Lang. 1983. Real analysis second ed.). Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA. xv
[16]
533 pages.
[17]
Kisun Lee, Nan Li, and Lihong Zhi. 2019. On isolation of singular zeros of multivariate analytic systems. arXiv preprint arXiv:1904.07937 (2019).
[18]
Nan Li and Lihong Zhi. 2014. Verified error bounds for isolated singular solutions of polynomial systems. SIAM J. Numer. Anal., Vol. 52, 4 (2014), 1623--1640.
[19]
J. Liouville. 1840. Mémoire sur les transcendantes élliptiques de première et de seconde espèce, considérées comme fonctions de leur module . 441--464 pages.
[20]
Angelos Mantzaflaris and Bernard Mourrain. 2011. Deflation and certified isolation of singular zeros of polynomial systems. In Proceedings of the 36th international symposium on Symbolic and algebraic computation. ACM, 249--256.
[21]
Maplesoft. 2018. Maple (2018). a division of Waterloo Maple Inc., Waterloo, Ontario (2018).
[22]
M. Mezzarobba. 2010. NumGfun: a package for numerical and analytic computation with D-finite functions. In Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. ACM, 139--145.
[23]
M. Mezzarobba. 2016. Rigorous Multiple-Precision Evaluation of D-Finite Functions in SageMath . Technical Report 1607.01967. arXiv.
[24]
M. Mezzarobba and B. Salvy. 2010. Effective bounds for P-recursive sequences. J. Symbolic Comput., Vol. 45, 10 (2010), 1075--1096.
[25]
M. Mezzino and M. Pinsky. 1998. Leibniz's Formula, Cauchy Majorants, and Linear Differential Equations. Math. Mag., Vol. 71, 5 (1998), 360--368.
[26]
R. E. Moore, R. B. Kearfott, and M. J. Cloud. 2009. Introduction to interval analysis . Vol. 110. Siam.
[27]
R. E. Moore and J. B. Kioustelidis. 1980. A Simple Test for Accuracy of Approximate Solutions to Nonlinear (or Linear) Systems. SIAM J. Numer. Anal., Vol. 17, 4 (1980), 521--529.
[28]
H. Ratschek and J. Rokne. 1984. Computer Methods for the Range of Functions .Ellis Horwood Limited.
[29]
M. Shub and S. Smale. 2000. Complexity of Bezout's theorem. I: geometric aspects. In The Collected Papers of Stephen Smale: Volume 3. World Scientific, 1359--1401.
[30]
S. Smale. 1986. Newton's method estimates from data at one point. The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics (1986).
[31]
The Sage Developers. 2018. SageMath, the Sage Mathematics Software System (Version 8.3) . http://www.sagemath.org.
[32]
J. van der Hoeven. 1999. Fast evaluation of holonomic functions. Theoret. Comput. Sci., Vol. 210, 1 (1999), 199--215.
[33]
J. van der Hoeven. 2003. Majorants for formal power series . Technical Report 2003--15. Université Paris-Sud, Orsay, France.

Cited By

View all
  • (2024)Certified homotopy tracking using the Krawczyk methodProceedings of the 2024 International Symposium on Symbolic and Algebraic Computation10.1145/3666000.3669699(274-282)Online publication date: 16-Jul-2024
  • (2024)Effective Alpha Theory Certification Using Interval Arithmetic: Alpha Theory over RegionsMathematical Software – ICMS 202410.1007/978-3-031-64529-7_29(275-284)Online publication date: 17-Jul-2024
  • (2023)Certifying Zeros of Polynomial Systems Using Interval ArithmeticACM Transactions on Mathematical Software10.1145/358027749:1(1-14)Online publication date: 21-Mar-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '19: Proceedings of the 2019 International Symposium on Symbolic and Algebraic Computation
July 2019
418 pages
ISBN:9781450360845
DOI:10.1145/3326229
  • General Chairs:
  • James Davenport,
  • Dongming Wang,
  • Program Chair:
  • Manuel Kauers,
  • Publications Chair:
  • Russell Bradford
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 July 2019

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. certification
  2. dfinite functions
  3. holonomic functions
  4. interval arithmetic
  5. krawczyk operator

Qualifiers

  • Research-article

Funding Sources

Conference

ISSAC '19

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)93
  • Downloads (Last 6 weeks)14
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Certified homotopy tracking using the Krawczyk methodProceedings of the 2024 International Symposium on Symbolic and Algebraic Computation10.1145/3666000.3669699(274-282)Online publication date: 16-Jul-2024
  • (2024)Effective Alpha Theory Certification Using Interval Arithmetic: Alpha Theory over RegionsMathematical Software – ICMS 202410.1007/978-3-031-64529-7_29(275-284)Online publication date: 17-Jul-2024
  • (2023)Certifying Zeros of Polynomial Systems Using Interval ArithmeticACM Transactions on Mathematical Software10.1145/358027749:1(1-14)Online publication date: 21-Mar-2023
  • (2019)Certifying approximate solutions to polynomial systems on Macaulay2ACM Communications in Computer Algebra10.1145/3371991.337199553:2(45-48)Online publication date: 8-Nov-2019

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media