[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article
Public Access

Algorithm 1000: SuiteSparse:GraphBLAS: Graph Algorithms in the Language of Sparse Linear Algebra

Published: 09 December 2019 Publication History

Abstract

SuiteSparse:GraphBLAS is a full implementation of the GraphBLAS standard, which defines a set of sparse matrix operations on an extended algebra of semirings using an almost unlimited variety of operators and types. When applied to sparse adjacency matrices, these algebraic operations are equivalent to computations on graphs. GraphBLAS provides a powerful and expressive framework for creating graph algorithms based on the elegant mathematics of sparse matrix operations on a semiring. An overview of the GraphBLAS specification is given, followed by a description of the key features and performance of its implementation in the SuiteSparse:GraphBLAS package.

Supplementary Material

ZIP File (1000.zip)
Software for SuiteSparse:GraphBLAS: Graph Algorithms in the Language of Sparse Linear Algebra

References

[1]
M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L. Willke, and P. Dubey. 2016. GraphPad: Optimized graph primitives for parallel and distributed platforms. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS’16). 313--322.
[2]
A. Azad, A. Buluç, and J. Gilbert. 2015. Parallel triangle counting and enumeration using matrix algebra. In 2015 IEEE International Parallel and Distributed Processing Symposium Workshop. 804--811.
[3]
A. Buluç and J. R. Gilbert. 2008. On the representation and multiplication of hypersparse matrices. In 2008 IEEE International Symposium on Parallel and Distributed Processing. 1--11.
[4]
A. Buluç and J. R. Gilbert. 2011. The combinatorial BLAS: Design, implementation, and applications. The International J. High Perform. Comput. Appl. 25, 4 (2011), 496--509. arXiv:https://doi.org/10.1177/1094342011403516
[5]
A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang. 2017. The GraphBLAS C API Specification. Technical Report. http://graphblas.org/.
[6]
P. Cailliau. 2018. Benchmarking RedisGraph 1.0. Retrieved on 08 Nov, 2019 from https://redislabs.com/blog/new-redisgraph-1-0-achieves-600x-faster-performance-graph-databases.
[7]
T. A. Davis. 2006. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, PA.
[8]
T. A. Davis. 2018. Graph algorithms via SuiteSparse:GraphBLAS: Triangle counting and K-truss. In 2018 IEEE High Performance Extreme Computing Conference (HPEC’18). (doi to appear; in the meantime, see http://faculty.cse.tamu.edu/davis/publications_files/Davis_HPEC18.pdf).
[9]
T. A. Davis and Y. Hu. 2011. The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1 (Dec. 2011), 1:1--1:25.
[10]
T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. 2016. A survey of direct methods for sparse linear systems. Acta Numerica 25 (2016), 383--566.
[11]
K. Ekanadham, W. Horn, J. Jann, M. Kumar, J. Moreira, P. Pattnaik, M. Serrano, G. Tanase, and H. Yu. 2014. Graph Programming Interface: Rationale and Specification. Technical Report RC25508 (WAT1411-052). IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY.
[12]
J. R. Gilbert, C. Moler, and R. Schreiber. 1992. Sparse matrices in MATLAB: Design and implementation. SIAM J. Matrix Anal. Appl. 13, 1 (1992), 333--356.
[13]
F. G. Gustavson. 1978. Two fast algorithms for sparse matrices: Multiplication and permuted transposition. ACM Trans. Math. Softw. 4, 3 (1978), 250--269.
[14]
D. Hutchison, J. Kepner, V. Gadepally, and B. Howe. 2016. From NoSQL Accumulo to NewSQL Graphulo: Design and utility of graph algorithms inside a BigTable database. In 2016 IEEE High Performance Extreme Computing Conference (HPEC’16). 1--9.
[15]
J. Kepner. 2017. GraphBLAS Mathematics. Technical Report. MIT Lincoln Lab. http://www.mit.edu/∼kepner/GraphBLAS/GraphBLAS-Math-release.pdf
[16]
J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert, D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan, C. Yang, J. D. Owens, M. Zalewski, T. Mattson, and J. Moreira. 2016. Mathematical foundations of the GraphBLAS. In 2016 IEEE High Performance Extreme Computing Conference (HPEC’16). 1--9.
[17]
J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun, G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas, A. Prout, A. Reuther, A. Rosa, and C. Yee. 2012. Dynamic distributed dimensional data model (D4M) database and computation system. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’12). 5349--5352.
[18]
J. Kepner and J. Gilbert. 2011. Graph Algorithms in the Language of Linear Algebra. SIAM, Philadelphia, PA.
[19]
J. Leskovec and A. Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data.
[20]
M. Luby. 1986. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15, 4 (1986).
[21]
L. Page, S. Brin, R. Motwani, and T. Winograd. 1999. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-66. Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/ Previous number = SIDL-WP-1999-0120.
[22]
N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J. Anderson, S. G. Vadlamudi, D. Das, and P. Dubey. 2015. GraphMat: High performance graph analytics made productive. In Proceedings of VLDB 2015, Vol. 8. 1214--1225.
[23]
C. Yang, A. Buluç, and J. D. Owens. 2018. Design principles for sparse matrix multiplication on the GPU. In Euro-Par 2018: Parallel Processing, M. Aldinucci, L. Padovani, and M. Torquati (Eds.). Springer International Publishing, 672--687.

Cited By

View all
  • (2024)BYO: A Unified Framework for Benchmarking Large-Scale Graph ContainersProceedings of the VLDB Endowment10.14778/3665844.366585917:9(2307-2320)Online publication date: 1-May-2024
  • (2024)Flexible Differentiable Optimization via Model TransformationsINFORMS Journal on Computing10.1287/ijoc.2022.028336:2(456-478)Online publication date: 1-Mar-2024
  • (2024)ZeD: A Generalized Accelerator for Variably Sparse Matrix Computations in MLProceedings of the 2024 International Conference on Parallel Architectures and Compilation Techniques10.1145/3656019.3689905(246-257)Online publication date: 14-Oct-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 45, Issue 4
December 2019
207 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/3375544
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 December 2019
Accepted: 01 March 2019
Revised: 01 November 2018
Received: 01 June 2018
Published in TOMS Volume 45, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Graph algorithms
  2. GraphBLAS
  3. sparse matrices

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)629
  • Downloads (Last 6 weeks)113
Reflects downloads up to 16 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)BYO: A Unified Framework for Benchmarking Large-Scale Graph ContainersProceedings of the VLDB Endowment10.14778/3665844.366585917:9(2307-2320)Online publication date: 1-May-2024
  • (2024)Flexible Differentiable Optimization via Model TransformationsINFORMS Journal on Computing10.1287/ijoc.2022.028336:2(456-478)Online publication date: 1-Mar-2024
  • (2024)ZeD: A Generalized Accelerator for Variably Sparse Matrix Computations in MLProceedings of the 2024 International Conference on Parallel Architectures and Compilation Techniques10.1145/3656019.3689905(246-257)Online publication date: 14-Oct-2024
  • (2024)Sting: Near-storage accelerator framework for scalable triangle counting and beyondProceedings of the 61st ACM/IEEE Design Automation Conference10.1145/3649329.3658265(1-6)Online publication date: 23-Jun-2024
  • (2024)Go-Network: a graph sampling library written in GoCompanion of the 15th ACM/SPEC International Conference on Performance Engineering10.1145/3629527.3652903(151-155)Online publication date: 7-May-2024
  • (2024)GraphScope Flex: LEGO-like Graph Computing StackCompanion of the 2024 International Conference on Management of Data10.1145/3626246.3653383(386-399)Online publication date: 9-Jun-2024
  • (2024)Distributed-Memory Parallel Algorithms for Sparse Matrix and Sparse Tall-and-Skinny Matrix MultiplicationProceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis10.1109/SC41406.2024.00052(1-17)Online publication date: 17-Nov-2024
  • (2024)Sparsepipe: Sparse Inter-operator Dataflow Architecture with Cross-Iteration Reuse2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO)10.1109/MICRO61859.2024.00090(1201-1216)Online publication date: 2-Nov-2024
  • (2024)Cicero: Addressing Algorithmic and Architectural Bottlenecks in Neural Rendering by Radiance Warping and Memory Optimizations2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00096(1293-1308)Online publication date: 29-Jun-2024
  • (2024)Teaching Network Traffic Matrices in an Interactive Game Environment2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)10.1109/IPDPSW63119.2024.00097(459-467)Online publication date: 27-May-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media