[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3397481.3450690acmconferencesArticle/Chapter ViewAbstractPublication PagesiuiConference Proceedingsconference-collections
short-paper

User Preferences for Automated Curation of Snackable Content

Published: 14 April 2021 Publication History

Abstract

As the volume of content and the connectivity of social media have grown, snackable content has increasingly become an enjoyable and engaging way to share content. Snackable content is a shortened form of original content focusing on a single theme or motif for entertainment and quick understanding of a video moment. For content owners with a large library of long-form content (movies, television series, documentaries, etc.), one challenge in accommodating snackable content in social media uses is the correct identification and cutting of interesting regions. Related problems have been studied for algorithmic discovery of content for movie trailers, short-duration meme content, and medium duration news stories, but none of these approaches included user preferences as explicit drivers for cuts. This paper analyzes both human and automatic methods for creating snackable clips across different categories of content with two comprehensive user studies. Contrary to initial expectations, findings amongst the surveyed population indicate a preference for slightly longer snackable clips (60-90 seconds) and those that began or ended with a human character.

References

[1]
G. Adomavicius and A. Tuzhilin. 2005. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17, 6 (June 2005), 734–749. https://doi.org/10.1109/TKDE.2005.99
[2]
Sonakshi Babbar. 2014. 5 Attention-Grabbing Snackable Content Ideas. https://vwo.com/blog/snackable-content/
[3]
Lorenzo Baraldi, Costantino Grana, and Rita Cucchiara. 2016. Recognizing and Presenting the Storytelling Video Structure with Deep Multimodal Networks. arXiv:1610.01376 [cs] (Nov. 2016). http://arxiv.org/abs/1610.01376 arXiv: 1610.01376.
[4]
Tim Dams. 2019. Quibi: Assessing the appetite for snackable streaming. https://www.ibc.org/trends/quibi-assessing-the-appetite-for-snackable-streaming/5272.article
[5]
Media Distillery. 2020. Snackable Content™: Short content based on consumer interests. https://www.mediadistillery.com/tv-operators/snackable-content-2/
[6]
Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, R. Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan Seybold, Malcolm Slaney, Ron J. Weiss, and Kevin Wilson. 2017. CNN Architectures for Large-Scale Audio Classification. arXiv:1609.09430 [cs, stat] (Jan. 2017). http://arxiv.org/abs/1609.09430 arXiv: 1609.09430.
[7]
Nielsen. 2018. Younger, More Affluent Viewers Power Out-of-Home TV Viewing Lift. https://www.nielsen.com/us/en/insights/article/2018/younger-more-affluent-viewers-power-out-of-home-tv-viewing-lift
[8]
Nielsen. 2019. Game Changer: Rethinking Sports Experiences for Generation Z. https://nielsensports.com/game-changer-rethinking-sports-experiences-for-generation-z/
[9]
Nielsen. 2020. Nielsen’s February 2020 Total Audience Report Special Edition: Streaming Wars – Nielsen. https://www.nielsen.com/us/en/insights/report/2020/the-nielsen-total-audience-report-february-2020/
[10]
Mayu Otani, Yuta Nakashima, Esa Rahtu, and Janne Heikkilä. 2019. Rethinking the Evaluation of Video Summaries. arXiv:1903.11328 [cs] (April 2019). http://arxiv.org/abs/1903.11328 arXiv: 1903.11328.
[11]
Jae Sung Park, Marcus Rohrbach, Trevor Darrell, and Anna Rohrbach. 2019. Adversarial Inference for Multi-Sentence Video Description. arXiv:1812.05634 [cs] (April 2019). http://arxiv.org/abs/1812.05634 arXiv: 1812.05634.
[12]
Snackable. 2019. The Approaching Audio-First Web. https://www.snackable.ai/blog/2019/12/14/the-approaching-audio-first-web
[13]
Maxim Tkachenko, Mikhail Malyuk, Nikita Shevchenko, Andrey Holmanyuk, and Nikolai Liubimov. 2021. Label Studio: Data Labeling Software. https://github.com/heartexlabs/label-studio original-date: 2019-06-19T02:00:44Z.
[14]
Lezi Wang, Dong Liu, Rohit Puri, and Dimitris N. Metaxas. 2020. Learning Trailer Moments in Full-Length Movies. arXiv:2008.08502 [cs] (Aug. 2020). http://arxiv.org/abs/2008.08502 arXiv: 2008.08502.
[15]
Wikipedia. 2020. Netflix Prize. https://en.wikipedia.org/w/index.php?title=Netflix_Prize&oldid=970689854 Page Version ID: 970689854.
[16]
Yale Song, Jordi Vallmitjana, Amanda Stent, and Alejandro Jaimes. 2015. TVSum: Summarizing web videos using titles. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 5179–5187. https://doi.org/10.1109/CVPR.2015.7299154ISSN: 1063-6919.
[17]
Yifan Zhong, Tahir Lazaro Sousa Menezes, Vikas Kumar, Qian Zhao, and F. Maxwell Harper. 2018. A field study of related video recommendations: newest, most similar, or most relevant?. In Proceedings of the 12th ACM Conference on Recommender Systems(RecSys ’18). Association for Computing Machinery, Vancouver, British Columbia, Canada, 274–278. https://doi.org/10.1145/3240323.3240395

Cited By

View all
  • (2025)Perfil periodístico y competencias digitales en redes sociales: estudio de caso de Ángel Martín en TikTokThe journalist’s profile and their digital competence in social media: the case study of Ángel Martín on TikTokDoxa Comunicación. Revista Interdisciplinar de Estudios de Comunicación y Ciencias Sociales10.31921/doxacom.n40a2723Online publication date: 1-Jan-2025
  • (2024)Towards Automated Movie Trailer Generation2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00711(7445-7454)Online publication date: 16-Jun-2024
  • (2023)A Trauma-Informed, Geospatially Aware, Just-in-Time Adaptive mHealth Intervention to Support Effective Coping Skills Among People Living With HIV in New Orleans: Development and Protocol for a Pilot Randomized Controlled TrialJMIR Research Protocols10.2196/4715112(e47151)Online publication date: 24-Oct-2023
  • Show More Cited By

Index Terms

  1. User Preferences for Automated Curation of Snackable Content
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      IUI '21: Proceedings of the 26th International Conference on Intelligent User Interfaces
      April 2021
      618 pages
      ISBN:9781450380171
      DOI:10.1145/3397481
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 14 April 2021

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. computer vision
      2. content curation
      3. user survey

      Qualifiers

      • Short-paper
      • Research
      • Refereed limited

      Conference

      IUI '21
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 746 of 2,811 submissions, 27%

      Upcoming Conference

      IUI '25

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)41
      • Downloads (Last 6 weeks)2
      Reflects downloads up to 18 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)Perfil periodístico y competencias digitales en redes sociales: estudio de caso de Ángel Martín en TikTokThe journalist’s profile and their digital competence in social media: the case study of Ángel Martín on TikTokDoxa Comunicación. Revista Interdisciplinar de Estudios de Comunicación y Ciencias Sociales10.31921/doxacom.n40a2723Online publication date: 1-Jan-2025
      • (2024)Towards Automated Movie Trailer Generation2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00711(7445-7454)Online publication date: 16-Jun-2024
      • (2023)A Trauma-Informed, Geospatially Aware, Just-in-Time Adaptive mHealth Intervention to Support Effective Coping Skills Among People Living With HIV in New Orleans: Development and Protocol for a Pilot Randomized Controlled TrialJMIR Research Protocols10.2196/4715112(e47151)Online publication date: 24-Oct-2023
      • (2022)El consumo audiovisual de los Millennials y la Generación Z: preferencia por los contenidos snackablesDoxa Comunicación. Revista Interdisciplinar de Estudios de Comunicación y Ciencias Sociales10.31921/doxacom.n36a1687(303-320)Online publication date: 28-Sep-2022

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media