[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3391403.3399544acmconferencesArticle/Chapter ViewAbstractPublication PagesecConference Proceedingsconference-collections
abstract

Optimizing Offer Sets in Sub-Linear Time

Published: 13 July 2020 Publication History

Abstract

Personalization and recommendations are now accepted as core competencies in just about every online setting, ranging from media platforms to e-commerce to social networks. While the challenge of estimating user preferences has garnered significant attention, the operational problem of using such preferences to construct personalized offer sets to users is largely still open, particularly in modern settings where a massive number of items and a millisecond response time requirement mean that even enumerating all of the items is impossible. Faced with such settings, existing techniques are either (a) entirely heuristic with no principled justification, or (b) theoretically sound, but simply too slow to work.
Thus motivated, we propose an algorithm for personalized offer set optimization that runs in time sub-linear in the number of items while enjoying a uniform performance guarantee. Our algorithm works for an extremely general class of problems and models of user choice that includes the mixture MNL model as a special case. We achieve a sub-linear runtime by leveraging the dimensionality reduction from learning an accurate latent factor model, along with existing sub-linear time approximate near neighbor algorithms. Our algorithm can be entirely data-driven, relying on samples of the user, where a 'sample' refers to the user interaction data typically collected by firms. We evaluate our approach on a massive content discovery dataset from Outbrain that includes millions of advertisements. Results show that our implementation indeed runs on the order of milliseconds, with increased performance relative to existing fast heuristics.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
EC '20: Proceedings of the 21st ACM Conference on Economics and Computation
July 2020
937 pages
ISBN:9781450379755
DOI:10.1145/3391403
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 July 2020

Check for updates

Author Tags

  1. assortment optimization
  2. choice models
  3. locality sensitive hashing
  4. nearest neighbor algorithms

Qualifiers

  • Abstract

Conference

EC '20
Sponsor:
EC '20: The 21st ACM Conference on Economics and Computation
July 13 - 17, 2020
Virtual Event, Hungary

Acceptance Rates

Overall Acceptance Rate 664 of 2,389 submissions, 28%

Upcoming Conference

EC '25
The 25th ACM Conference on Economics and Computation
July 7 - 11, 2025
Stanford , CA , USA

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 135
    Total Downloads
  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media