[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3387940.3391469acmconferencesArticle/Chapter ViewAbstractPublication PagesicseConference Proceedingsconference-collections
research-article

The Holy Grail of Quantum Artificial Intelligence: Major Challenges in Accelerating the Machine Learning Pipeline

Published: 25 September 2020 Publication History

Abstract

We discuss the synergetic connection between quantum computing and artificial intelligence. After surveying current approaches to quantum artificial intelligence and relating them to a formal model for machine learning processes, we deduce four major challenges for the future of quantum artificial intelligence: (i) Replace iterative training with faster quantum algorithms, (ii) distill the experience of larger amounts of data into the training process, (iii) allow quantum and classical components to be easily combined and exchanged, and (iv) build tools to thoroughly analyze whether observed benefits really stem from quantum properties of the algorithm.

References

[1]
[n. d.]. HHL implementation. https://github.com/Qiskit/qiskit-iqx-tutorials/blob/master/qiskit/advanced/aqua/linear_systems_of_equations.ipynb.
[2]
[n. d.]. QAOA implementation. https://pennylane.ai/qml/app/tutorial_qaoa_maxcut.html.
[3]
[n. d.]. QGAN Pennylane implementation. https://pennylane.ai/qml/app/tutorial_QGAN.html.
[4]
[n. d.]. QGAN Qiskit implementation. https://github.com/Qiskit/qiskit-iqx-tutorials/blob/master/qiskit/advanced/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb.
[5]
[n. d.]. SVM implementation. https://github.com/Qiskit/qiskit-iqx-tutorials/blob/master/qiskit/advanced/aqua/artificial_intelligence/qsvm_classification.ipynb.
[6]
Esma Aïmeur, Gilles Brassard, and Sébastien Gambs. 2007. Quantum clustering algorithms. Proceedings of the 24th int'l conference on machine learning (2007).
[7]
DJ Albers, JC Sprott, and WD Dechert. 1996. Dynamical behavior of artificial neural networks with random weights. Intelligent Engineering Systems Through Artificial Neural Networks 6 (1996), 17--22.
[8]
Md Zahangir Alom, Tarek M Taha, Chris Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Mahmudul Hasan, Brian C Van Essen, Abdul AS Awwal, and Vijayan K Asari. 2019. A state-of-the-art survey on deep learning theory and architectures. Electronics 8, 3 (2019), 292.
[9]
Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and Roger Melko. 2018. Quantum boltzmann machine. arXiv:1601.02036 (2018).
[10]
Dario Amodei and Danny Hernandez. 2018. AI and Compute. https://openai.com/blog/ai-and-compute/.
[11]
Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. 2016. Concrete problems in AI safety. arXiv:1606.06565 (2016).
[12]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505--510.
[13]
Lenz Belzner, Michael Till Beck, Thomas Gabor, Harald Roelle, and Horst Sauer. 2016. Software engineering for distributed autonomous real-time systems. In Proceedings of the 2nd International Workshop on Software Engineering for Smart Cyber-Physical Systems. ACM, 54--57.
[14]
Tomas Bures, DannyWeyns, Bradley Schmer, Eduardo Tovar, Eric Boden, Thomas Gabor, Ilias Gerostathopoulos, Pragya Gupta, Eunsuk Kang, Alessia Knauss, et al. 2017. Software Engineering for Smart Cyber-Physical Systems: Challenges and Promising Solutions. ACM SIGSOFT Software Eng. Notes 42, 2 (2017), 19--24.
[15]
Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Mirandola. 2012. Self-adaptive software needs quantitative verification at runtime. Commun. ACM 55, 9 (2012), 69--77.
[16]
Giuseppe Cuccu, Julian Togelius, and Philippe Cudré-Mauroux. 2019. Playing atari with six neurons. In Proceedings of the 18th international conference on autonomous agents and multiagent systems. International Foundation for Autonomous Agents and Multiagent Systems, 998--1006.
[17]
Pierre-Luc Dallaire-Demers and Nathan Killoran. 2018. Quantum generative adversarial networks. arXiv:1804.08641v2 (2018).
[18]
Daoyi Dong, Chunlin Chen, Hanxiong Li, and Tzyh-Jong Tarn. 2008. Quantum reinforcement learning. arXiv:0810.3828 (2008).
[19]
Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv:1411.4028 (2014).
[20]
Thomas Fösel, Petru Tighineanu, Talitha Weiss, and Florian Marquardt. 2018. Reinforcement learning with neural networks for quantum feedback. Physical Review X 8, 3 (2018), 031084.
[21]
Thomas Gabor, Marie Kiermeier, Andreas Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. 2018. Adapting quality assurance to adaptive systems: the scenario coevolution paradigm. In International Symposium on Leveraging Applications of Formal Methods. Springer, 137--154.
[22]
Thomas Gabor, Andreas Sedlmeier, Thomy Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, Jan Wieghardt, Marc Zeller, and Claudia Linnhoff-Popien. 2020. The Scenario Co-Evolution Paradigm: Adaptive Quality Assurance for Adaptive Systems. International Journal on Software Tools and Technology Transfer (2020).
[23]
Fred Glover, Gary Kochenberger, and Yu Du. 2018. A tutorial on formulating and using qubo models. arXiv preprint arXiv:1811.11538 (2018).
[24]
Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum algorithm for linear systems of equations. arXiv:0811.317v3 (2009).
[25]
Vojtěch Havlicek, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kandala, Jerry M Chow, and Jay M Gambetta. 2018. Supervised learning with quantum-enhanced feature spaces. arXiv:1804.11326v2 (2018).
[26]
Matthias Hölzl, Nora Koch, Mariachiara Puviani, Martin Wirsing, and Franco Zambonelli. 2015. The ensemble development life cycle and best practices for collective autonomic systems. In Software Engineering for Collective Autonomic Systems. Springer, 325--354.
[27]
Tadashi Kadowaki and Hidetoshi Nishimori. 1998. Quantum annealing in the transverse Ising model. Physical Review E 58, 5 (1998), 5355.
[28]
Iordanis Kerenidis and Anupam Prakash. 2016. Quantum recommendation systems. arXiv:1603.08675v3 (2016).
[29]
Amir Khoshaman, Walter Vinci, Brandon Denis, Evgeny Andriyash, Hossein Sadeghi, and Mohammad H Amin. 2018. Quantum variational autoencoder. arXiv:1802.05779v2 (2018).
[30]
James King, Masoud Mohseni, William Bernoudy, Alexandre Fréchette, Hossein Sadeghi, Sergei V Isakov, Hartmut Neven, and Mohammad H Amin. 2019. Quantum-Assisted Genetic Algorithm. arXiv:1907.00707 (2019).
[31]
Frank Leymann, Johanna Barzen, and Michael Falkenthal. 2019. Towards a Platform for Sharing Quantum Software. Proceedings of the 13th Advanced Summer School on Service (2019), 70--74.
[32]
Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2013. Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411 (2013).
[33]
Seth Lloyd and Christian Weedbrook. 2018. Quantum generative adversarial learning. arXiv:1804.09139 (2018).
[34]
Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in Physics 2 (2014), 5.
[35]
A Manju and Madhav J Nigam. 2014. Applications of quantum inspired computational intelligence: a survey. Artificial Intelligence Review 42, 1 (2014), 79--156.
[36]
Catherine C McGeoch. 2014. Adiabatic quantum computation and quantum annealing: Theory and practice. Synthesis Lectures on Quantum Computing 5, 2 (2014), 1--93.
[37]
Catherine C McGeoch and Cong Wang. 2013. Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In Proceedings of the ACM International Conference on Computing Frontiers. 1--11.
[38]
Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. 2018. Data-efficient hierarchical reinforcement learning. In Advances in Neural Information Processing Systems. 3303--3313.
[39]
Florian Neukart, David Von Dollen, Christian Seidel, and Gabriele Compostella. 2018. Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces. arXiv:1708.09354v3 (2018).
[40]
Oscar Nierstrasz, Marcus Denker, Tudor Gîrba, Adrian Lienhard, and David Röthlisberger. 2008. Change-enabled software systems. In Software-Intensive Systems and New Computing Paradigms. Springer, 64--79.
[41]
PennyLane. [n. d.]. VQE implementation. https://pennylane.ai/qml/demos/tutorial_vqe.html.
[42]
Alejandro Perdomo-Ortiz, Marcello Benedetti, John Realpe-Gómez, and Rupak Biswas. 2018. Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Science and Technology 3, 3 (2018), 030502.
[43]
Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O'brien. 2014. A variational eigenvalue solver on a photonic quantum processor. Nature commun. 5 (2014).
[44]
Riccardo Porotti, Dario Tamascelli, Marcello Restelli, and Enrico Prati. 2019. Coherent transport of quantum states by deep reinforcement learning. Communications Physics 2, 1 (2019), 1--9.
[45]
John Preskill. 2018. Quantum Computing in the NISQ era and beyond. arXiv:1801.00862v3 (2018).
[46]
Jonathan Romero and Alan Aspuru-Guzik. 2019. Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions. arXiv:1901.00848 (2019).
[47]
Jonathan Romero, Jonathan P Olson, and Alan Aspuru-Guzik. 2017. Quantum autoencoders for efficient compression of quantum data. arXiv:1612.02806v2 (2017).
[48]
Sukin Sim, Evan Anderson, Eric Brown, and Jonathan Romero. [n. d.]. Autoencoder implementation. https://github.com/hsim13372/QCompress-1.
[49]
Richard Sutton. 2019. The Bitter Lesson. http://www.incompleteideas.net/IncIdeas/BitterLesson.html.
[50]
The AlphaStar team. 2019. AlphaStar: Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii.
[51]
Danny Weyns. 2017. Software engineering of self-adaptive systems: an organised tour and future challenges. (2017).
[52]
Nathan Wiebe, Ashish Kapoor, and Krysta Svore. 2014. Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. arXiv:1401.2142v2 (2014).
[53]
Nathan Wiebe and Leonard Wossnig. 2019. Generative training of quantum Boltzmann machines with hidden units. arXiv:1905.09902 (2019).
[54]
D. Willsch, M. Willsch, H. De Raedt, and K. Michielsen. 2019. Support vector machines on the D-Wave quantum annealer. arXiv:1906.06283 (2019).
[55]
Stephen Wolfram. 2018. Buzzword Convergence: Making Sense of Quantum Neural Blockchain AI. https://writings.stephenwolfram.com/2018/04/buzzword-convergence-making-sense-of-quantum-neural-blockchain-ai/.
[56]
Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. 2019. Quantum generative adversarial networks for learning and loading random distributions. arXiv:1904.00043 (2019).

Cited By

View all
  • (2025)Skills Required for Quantum Computing: A Comprehensive Review of Recent StudiesProgramming and Computer Software10.1134/S036176882470080450:8(844-874)Online publication date: 12-Jan-2025
  • (2024)Quantum Denoising Diffusion Models2024 IEEE International Conference on Quantum Software (QSW)10.1109/QSW62656.2024.00023(88-98)Online publication date: 7-Jul-2024
  • (2024)Cohesive Quantum Circuit Layer Construction with Reinforcement Learning2024 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE60285.2024.00201(1721-1730)Online publication date: 15-Sep-2024
  • Show More Cited By

Index Terms

  1. The Holy Grail of Quantum Artificial Intelligence: Major Challenges in Accelerating the Machine Learning Pipeline

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image ACM Conferences
          ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops
          June 2020
          831 pages
          ISBN:9781450379632
          DOI:10.1145/3387940
          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Sponsors

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          Published: 25 September 2020

          Permissions

          Request permissions for this article.

          Check for updates

          Author Tags

          1. artificial intelligence
          2. quantum computing
          3. software engineering

          Qualifiers

          • Research-article
          • Research
          • Refereed limited

          Conference

          ICSE '20
          Sponsor:
          ICSE '20: 42nd International Conference on Software Engineering
          June 27 - July 19, 2020
          Seoul, Republic of Korea

          Upcoming Conference

          ICSE 2025

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)40
          • Downloads (Last 6 weeks)4
          Reflects downloads up to 13 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2025)Skills Required for Quantum Computing: A Comprehensive Review of Recent StudiesProgramming and Computer Software10.1134/S036176882470080450:8(844-874)Online publication date: 12-Jan-2025
          • (2024)Quantum Denoising Diffusion Models2024 IEEE International Conference on Quantum Software (QSW)10.1109/QSW62656.2024.00023(88-98)Online publication date: 7-Jul-2024
          • (2024)Cohesive Quantum Circuit Layer Construction with Reinforcement Learning2024 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE60285.2024.00201(1721-1730)Online publication date: 15-Sep-2024
          • (2024)Enhancing Quantum Diffusion Models with Pairwise Bell State EntanglementPattern Recognition10.1007/978-3-031-78395-1_23(347-361)Online publication date: 3-Dec-2024
          • (2023)Potential of Quantum Technologies in the Energy Sector2023 23rd International Scientific Conference on Electric Power Engineering (EPE)10.1109/EPE58302.2023.10149255(1-6)Online publication date: 24-May-2023
          • (2023)Provenance-Preserving Analysis and Rewrite of Quantum Workflows for Hybrid Quantum AlgorithmsSN Computer Science10.1007/s42979-022-01625-94:3Online publication date: 23-Feb-2023
          • (2022)Quantum Computing for Dealing with Inaccurate Knowledge Related to the Certainty Factors ModelMathematics10.3390/math1002018910:2(189)Online publication date: 8-Jan-2022
          • (2022)The applicability of reinforcement learning for the automatic generation of state preparation circuitsProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3520304.3534039(2196-2204)Online publication date: 9-Jul-2022
          • (2022)How to Approximate any Objective Function via Quadratic Unconstrained Binary Optimization2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)10.1109/SANER53432.2022.00149(1249-1257)Online publication date: Mar-2022
          • (2022)Simple Quantum State Encodings for Hybrid Programming of Quantum Simulators2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C)10.1109/ICSA-C54293.2022.00040(170-173)Online publication date: Mar-2022
          • Show More Cited By

          View Options

          Login options

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media