[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3373207.3403983acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
tutorial

What do sparse interpolation, padé approximation, gaussian quadrature and tensor decomposition have in common?

Published: 27 July 2020 Publication History

Abstract

No abstract available.

References

[1]
C. Brezinski. 1980. Padé type approximation and general orthogonal polynomials. ISNM 50, Birkhäuser Verlag, Basel.
[2]
M. Briani, A. Cuyt, and W.-s. Lee. 2017. VEXPA: Validated EXPonential Analysis through regular subsampling. ArXiv e-print 1709.04281 [math.NA]. Universiteit Antwerpen.
[3]
A. Cuyt, F. Knaepkens, and W.-s. Lee. 2018. From exponential analysis to Padé approximation and Tensor decomposition, in one and more dimensions. In LNCS11077, V.P. Gerdt et al. (Eds.). 116--130. Proceedings CASC 2018, Lille (France).
[4]
A. Cuyt and W.-s. Lee. 2016. Sparse interpolation and Rational approximation (Contemporary Mathematics), D. Hardin, D. Lubinsky, and B. Simanek (Eds.), Vol. 661. American Mathematical Society, Providence, RI, 229--242.
[5]
A. Cuyt, W.-s. Lee, and X. Yang. 2016. On tensor decomposition, sparse interpolation and Padé approximation. Jaén J. Approx. 8, 1 (2016), 33--58.
[6]
R. de Prony. 1795. Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l'eau et de la vapeur de l'alkool, à diférentes températures. J. Ec. Poly. 1 (1795), 24--76.
[7]
P. Henrici. 1974. Applied and computational complex analysis I. John Wiley & Sons, New York.
[8]
Y. Hua and T. K. Sarkar. 1990. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoust., Speech, Signal Process. 38 (1990), 814--824.
[9]
L. Weiss and R. N. McDonough. 1963. Prony's method, Z-transforms, and Padé approximation. SIAM Rev. 5 (1963), 145--149.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '20: Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation
July 2020
480 pages
ISBN:9781450371001
DOI:10.1145/3373207
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2020

Check for updates

Author Tags

  1. Hankel matrix
  2. Prony's method
  3. exponential analysis
  4. generalized eigenvalue

Qualifiers

  • Tutorial

Conference

ISSAC '20

Acceptance Rates

ISSAC '20 Paper Acceptance Rate 58 of 102 submissions, 57%;
Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 57
    Total Downloads
  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)1
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media