[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3373207.3404062acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

On the geometry and the topology of parametric curves

Published: 27 July 2020 Publication History

Abstract

We consider the problem of computing the topology and describing the geometry of a parametric curve in Rn. We present an algorithm, PTOPO, that constructs an abstract graph that is isotopic to the curve in the embedding space. Our method exploits the benefits of the parametric representation and does not resort to implicitization.
Most importantly, we perform all computations in the parameter space and not in the implicit space. When the parametrization involves polynomials of degree at most d and maximum bitsize of coefficients τ, then the worst case bit complexity of PTOPO is ÕB (nd6 + nd5 τ + d4 (n2 + nτ) + d3 (n2τ + n3) + n3d2τ). This bound matches the current record bound ÕB (d6 + d5 τ) for the problem of computing the topology of a planar algebraic curve given in implicit form. For planar and space curves, if N = max{d, τ}, the complexity of PTOPO becomes ÕB (N6), which improves the state-of-the-art result, due to Alcázar and Díaz-Toca [CAGD'10], by a factor of N10. However, visualizing the curve on top of the abstract graph construction, increases the bound to ÕB (N7). We have implemented PTOPO in maple for the case of planar curves. Our experiments illustrate its practical nature.

References

[1]
S. S. Abhyankar and C. J. Bajaj. Automatic parameterization of rational curves and surfaces IV: Algebraic space curves. ACM Trans. Graph., 8(4):325--334, 1989.
[2]
L. Alberti, B. Mourrain, and J. Wintz. Topology and arrangement computation of semi-algebraic planar curves. CAGD, 25(8):631--651, 2008.
[3]
J. G. Alcázar and G. M. Díaz-Toca. Topology of 2D and 3D rational curves. CAGD, 27(7):483--502, 2010.
[4]
S. Basu, R. Pollack, and M-F.Roy. Algorithms in Real Algebraic Geometry, volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag, 2003.
[5]
A. Bernardi, A. Gimigliano, and M. Idà. Singularities of plane rational curves via projections. J. Symb. Comput., 09 2016.
[6]
A. Blasco and S. Pérez-Díaz. An in depth analysis, via resultants, of the singularities of a parametric curve. CAGD, 68:22--47, 2019.
[7]
J.-D. Boissonnat and M. Teillaud, editors. Effective Computational Geometry for Curves and Surfaces. Springer-Verlag, Mathematics and Visualization, 2006.
[8]
Y. Bouzidi, S. Lazard, G. Moroz, M. Pouget, F. Rouillier, and M. Sagraloff. Solving bivariate systems using Rational Univariate Representations. J. Complexity, 37:34--75, 2016.
[9]
Y. Bouzidi, S. Lazard, M. Pouget, and F. Rouillier. Rational univariate representations of bivariate systems and applications. In Proc. 38th Int'l Symp. on Symbolic and Algebraic Computation, ISSAC '13, pages 109--116, NY, USA, 2013. ACM.
[10]
Y. Bouzidi, S. Lazard, M. Pouget, and F. Rouillier. Separating linear forms and rational univariate representations of bivariate systems. J. Symb. Comput., pages 84--119, 2015.
[11]
L. Busé, C. Laroche, and F. Yıldırım. Implicitizing rational curves by the method of moving quadrics. Computer-Aided Design, 114:101--111, 2019.
[12]
J. Caravantes, M. Fioravanti, L. Gonzalez-Vega, and I. Necula. Computing the topology of an arrangement of implicit and parametric curves given by values. In V. P. Gerdt, W. Koepf, W. M. Seiler, and E. V. Vorozhtsov, editors, Computer Algebra in Scientific Computing, pages 59--73, Cham, 2014. Springer.
[13]
D. Cox, A. Kustin, C. Polini, and B. Ulrich. A study of singularities on rational curves via syzygies. Memoirs of the American Mathematical Society, 222, 02 2011.
[14]
D. N. Diatta, S. Diatta, F. Rouillier, M.-F. Roy, and M. Sagraloff. Bounds for polynomials on algebraic numbers and application to curve topology. arXiv preprint arXiv:1807.10622, 2018.
[15]
D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the asymptotic and practical complexity of solving bivariate systems over the reals. J. Symb. Comput., 44(7):818--835, 2009. (Special issue on ISSAC 2007).
[16]
R. T. Farouki, C. Giannelli, and A. Sestini. Geometric design using space curves with rational rotation-minimizing frames. In M. Dæhlen, M. Floater, T. Lyche, J.-L. Merrien, K. Mørken, and L. L. Schumaker, editors, Mathematical Methods for Curves and Surfaces, pages 194--208. Springer, 2010.
[17]
W. Fulton. Algebraic Curves. An Introduction to Algebraic Geometry. Addison Wesley, 1969.
[18]
X.-S. Gao and S.-C. Chou. Implicitization of rational parametric equations. J. Symb. Comput., 14(5):459--470, 1992.
[19]
J. Gutierrez, R. Rubio, and D. Sevilla. On multivariate rational function decomposition. J. Symb. Comput., 33(5):545--562, 2002.
[20]
J. Gutierrez, R. Rubio, and J.-T. Yu. D-resultant for rational functions. Proc. American Mathematical Society, 130, 08 2002.
[21]
X. Jia, X. Shi, and F. Chen. Survey on the theory and applications of μ-bases for rational curves and surfaces. J. Comput. Appl. Math., 329:2--23, 2018.
[22]
A. Kobel and M. Sagraloff. On the complexity of computing with planar algebraic curves. J. Complexity, 31, 08 2014.
[23]
Y.-M. Li and R. J. Cripps. Identification of inflection points and cusps on rational curves. CAGD, 14(5):491--497, 1997.
[24]
T. Lickteig and M.-F. Roy. Sylvester-Habicht sequences and fast Cauchy index computation. J. Symb. Comput., 31(3):315--341, Mar. 2001.
[25]
K. Mahler. On some inequalities for polynomials in several variables. J. London Mathematical Society, 1(1):341--344, 1962.
[26]
D. Manocha and J. F. Canny. Detecting cusps and inflection points in curves. CAGD, 9(1):1--24, 1992.
[27]
V. Pan and E. Tsigaridas. Accelerated approximation of the complex roots and factors of a univariate polynomial. Theor. Computer Science, 681:138--145, 2017.
[28]
H. Park. Effective computation of singularities of parametric affine curves. J. Pure and Applied Algebra, 173:49--58, 08 2002.
[29]
S. Pérez-Díaz. On the problem of proper reparametrization for rational curves and surfaces. CAGD, 23(4):307--323, 2006.
[30]
S. Pérez-Díaz. Computation of the singularities of parametric plane curves. J. Symb. Comput., 42(8):835--857, 2007.
[31]
C. A. T. Recio. Plotting missing points and branches of real parametric curves. Applicable Algebra in Engineering, Communication and Computing, 18, 02 2007.
[32]
R. Rubio, J. Serradilla, and M. Vélez. Detecting real singularities of a space curve from a real rational parametrization. J. Symb. Comput., 44(5):490--498, 2009.
[33]
A. Schönhage. Probabilistic computation of integer polynomial gcds. J. Algorithms, 9(3):365--371, 1988.
[34]
T. W. Sederberg. Improperly parametrized rational curves. CAGD, 3(1):67--75, May 1986.
[35]
T. W. Sederberg and F. Chen. Implicitization using moving curves and surfaces. In Proc. of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '95, pages 301--308, NY, USA, 1995.
[36]
J. R. Sendra. Normal parametrizations of algebraic plane curves. J. Symb. Comput., 33:863--885, 2002.
[37]
J. R. Sendra and F. Winkler. Algorithms for rational real algebraic curves. Fundam. Inf., 39(1,2):211--228, Apr. 1999.
[38]
J. R. Sendra, F. Winkler, and S. Pérez-Díaz. Rational algebraic curves. Algorithms and Computation in Mathematics, 22, 2008.
[39]
A. Strzebonski and E. Tsigaridas. Univariate real root isolation in an extension field and applications. J. Symb. Comput., 92:31--51, 2019.
[40]
J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, 3rd edition, 2013.
[41]
R. J. Walker. Algebraic curves. Springer-Verlag, 1978.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '20: Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation
July 2020
480 pages
ISBN:9781450371001
DOI:10.1145/3373207
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. bit complexity
  2. parametric curve
  3. polynomial systems
  4. topology

Qualifiers

  • Research-article

Funding Sources

Conference

ISSAC '20

Acceptance Rates

ISSAC '20 Paper Acceptance Rate 58 of 102 submissions, 57%;
Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)1
Reflects downloads up to 31 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023) PTOPOJournal of Symbolic Computation10.1016/j.jsc.2022.08.012115:C(427-451)Online publication date: 1-Mar-2023
  • (2023)Computing the topology of the image of a parametric planar curve under a birational transformationComputer Aided Geometric Design10.1016/j.cagd.2023.102189(102189)Online publication date: Mar-2023
  • (2023)An Algorithm for the Intersection Problem of Planar Parametric CurvesComputer Algebra in Scientific Computing10.1007/978-3-031-41724-5_17(312-329)Online publication date: 24-Aug-2023
  • (2020)PTOPOACM Communications in Computer Algebra10.1145/3427218.342722354:2(49-52)Online publication date: 29-Sep-2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media